-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPEVRP.py
476 lines (425 loc) · 23.1 KB
/
PEVRP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import copy
import datetime
import math
import pickle
import sys
from multiprocessing import Pool
import numpy as np
from search_array_jit import find_first_occurrence
from pympler import asizeof
import sys, getopt
class PEVRP:
def __init__(self):
with open("../../graphs/new_graph_below_175_upper_0_with_points_whole_graph.pickle", "rb") as a:
self.graph = pickle.load(a)
self.all_shortest_path_length = dict()
# for i in range(800):
# res = nx.single_source_dijkstra_path_length(self.graph, i, weight='travel_time')
# self.all_shortest_path_length[i] = res
# with open("all_shortest_path_length.pkl", "wb") as f:
# pickle.dump(self.all_shortest_path_length, f)
with open("all_shortest_path_length.pkl", "rb") as f:
self.all_shortest_path_length = pickle.load(f)
self.powers = dict()
for node in self.graph.nodes:
self.powers[node] = self.graph.nodes[node].get("power", 0)
self.station_state = np.zeros((800, 1440))
# with open("station_status.pkl", "rb") as f:
# self.station_state = pickle.load(f)
self.buckets = [50,75, 100]
self.route_table = dict()
self.current_bound = dict()
self.empty_route_table = dict()
self.empty_current_bound = dict()
self.look_ahead_threshold = 10
self.increase_threshold = 2
self.outlet_count = 1
for _id in range(800):
for b in self.buckets:
self.empty_route_table["{}-{}".format(_id, b)] = list()
self.empty_current_bound["{}-{}".format(_id, b)] = -1
self.row = {"from": None, "start_soc": None, "arrived_at": None, "leave_at": None, "arrived_soc": None,
"leave_soc": None, "charge_time": None, "wait_time": None}
def run(self, requests, threads, threshold, look_ahead, outlet_count):
self.look_ahead_threshold = look_ahead
self.outlet_count = outlet_count
total_travel_length = 0
for _id, request in enumerate(requests):
print("number of taken slots {}".format(np.count_nonzero(self.station_state != 0)))
tot = np.count_nonzero(self.station_state == 1) + 2 * np.count_nonzero(
self.station_state == 2) + 3 * np.count_nonzero(self.station_state == 3) + 4 * np.count_nonzero(
self.station_state == 4)
print("number of taken slots {}".format(tot))
t = datetime.datetime.now()
source = request.get("source")
target = request.get("destination")
soc = request.get("soc")
start_time = request.get("start_time")
max_receive_power = request.get("max_receive_power")
print(datetime.datetime.now())
found_paths = self.find_all_shortest_paths_with_current_station_status(source, target, soc, start_time,
max_receive_power)
forward_look_ahead_upper_bounds, candidates = self.refine_solutions_for_selective_look_ahead(
found_paths)
influence_list = list()
number_of_process = threads
pool = Pool(processes=number_of_process)
print("start to find influence path")
if len(found_paths) > 1:
thread_res_list = list()
this_round_requests = requests[_id + 1: _id + self.look_ahead_threshold]
divided_list_size = int((len(this_round_requests) + 1) / number_of_process)
for n in range(1, number_of_process + 1):
path_list = this_round_requests[(n - 1) * divided_list_size: n * divided_list_size]
thread_res_list.append(pool.apply_async(self.find_all_paths_for_list_of_requests,
[path_list, forward_look_ahead_upper_bounds, candidates,None, threshold]))
pool.close()
pool.join()
for thread_res in thread_res_list:
for item in thread_res.get():
influence_list.append(item)
print("end of found influence path")
self.calculate_influence_and_assign_best_route_v6(found_paths, influence_list, request)
total_travel_length += int(found_paths[0]["path"][1].split("-")[1]) - request.get("start_time")
print("route travel time : {}".format(int(found_paths[0]["path"][1].split("-")[1])))
print("total travel length till now : {}".format(total_travel_length))
print("request {} ended in {}".format(_id, datetime.datetime.now() - t))
def find_all_paths_for_list_of_requests(self, requests, forward_look_ahead_upper_bounds, candidates, station_state=None, threshold = 0):
if station_state is not None:
self.station_state = station_state
influence_list = list()
for r in requests:
source = r.get("source")
target = r.get("destination")
soc = r.get("soc")
max_receive_power = r.get("max_receive_power")
start_time = r.get("start_time")
influence_found_paths = self.find_all_shortest_paths_with_current_station_status(source, target,
soc,
start_time,
max_receive_power,
forward_look_ahead_upper_bounds,
candidates,
threshold)
influence_list.append(influence_found_paths)
return influence_list
def find_all_shortest_paths_with_current_station_status(self, source, target, soc, start_time, max_receive_power,
look_ahead_upper_bounds=None, candidates=None, threshold=0):
self.route_table = copy.deepcopy(self.empty_route_table)
self.current_bound = copy.deepcopy(self.empty_current_bound)
open_nodes = list()
possible_influence_path_counter = 0
inf = 0
if look_ahead_upper_bounds is not None:
if start_time < look_ahead_upper_bounds[source]:
possible_influence_path_counter += 1
inf = 1
open_nodes.append({"time": start_time, "node": "{}-{}".format(source, soc), "inf": inf, "always_one": False})
open_nodes_set = set()
open_nodes_set.add("{}-{}".format(source, soc))
upper_bound = np.inf
visited_node_list = list()
while len(open_nodes):
open_nodes = sorted(open_nodes, key=lambda d: d['time'])
current_node = open_nodes.pop(0)
open_nodes_set.remove(current_node["node"])
if look_ahead_upper_bounds is not None:
if possible_influence_path_counter == 0:
continue
possible_influence_path_counter -= current_node["inf"]
visited_node_list.append(current_node["node"])
if current_node["time"] > upper_bound:
continue
node_name, charge_amount = current_node["node"].split("-")
node_name = int(node_name)
charge_amount = int(charge_amount)
for neighbor in self.graph.neighbors(node_name):
if neighbor < 8 and neighbor != target:
continue
if neighbor == target:
this_round_bucket = [100]
else:
this_round_bucket = self.buckets
edge_data = self.graph.get_edge_data(node_name, neighbor)
if edge_data.get("distance") < 50000:
continue
if self.req_energy(edge_data.get("distance")) < charge_amount:
tt = current_node["time"] + int(edge_data.get("travel_time") / 60)
arrived_soc = charge_amount - self.req_energy(edge_data.get("distance"))
for charge_bucket in this_round_bucket:
if arrived_soc > charge_bucket:
continue
charge_time, wait_time = self.get_charge_at_station(neighbor, tt, charge_bucket - arrived_soc,
max_receive_power)
charge_and_wait = charge_time + wait_time
new_node = "{}-{}".format(neighbor, charge_bucket)
new_inf = 0
always_one = current_node["always_one"]
if look_ahead_upper_bounds is not None:
if tt + charge_and_wait < look_ahead_upper_bounds[neighbor][0]:
new_inf = 1
if neighbor in candidates:
always_one = True
if always_one:
new_inf = 1
my_row = {"from": node_name, "start_soc": charge_amount, "arrived_at": tt,
"leave_at": tt + charge_and_wait,
"arrived_soc": arrived_soc, "leave_soc": charge_bucket,
"charge_time": charge_time, "wait_time": wait_time}
self.route_table["{}-{}".format(neighbor, charge_bucket)].append(my_row)
if neighbor != target:
if new_node not in open_nodes_set:
if new_node not in visited_node_list:
open_nodes.append({"time": tt + charge_and_wait, "node": new_node, "inf": new_inf,
"always_one": always_one})
possible_influence_path_counter += new_inf
open_nodes_set.add(new_node)
self.current_bound[new_node] = tt + charge_and_wait
else:
if self.current_bound[new_node] > tt + charge_and_wait:
self.current_bound[new_node] = tt + charge_and_wait
for item in open_nodes:
if item["node"] == new_node:
item["time"] = tt + charge_and_wait
break
else:
if upper_bound > tt + charge_and_wait + threshold:
# print("new solution found: {}".format(datetime.datetime.now() - t))
upper_bound = tt + charge_and_wait+ threshold
open_paths = list()
complete_path_list = list()
open_paths.append({"path": list(), "start": start_time, "end": 0})
size = sys.getsizeof(self.route_table)
list_sizes = [sys.getsizeof(lst) for lst in self.route_table.values()]
total_size = asizeof.asizeof(self.route_table)
# print("Size of dictionary:", total_size, "bytes")
# node, arrive, leave, arrive_soc, leave_soc, charge_time, wait_time
open_paths[0]["path"].append("{}-{}-{}-{}-{}-{}-{}".format(target, None, None, 1, 1, 0, 0))
open_paths[0]["start"] = upper_bound
open_paths[0]["end"] = upper_bound
open_paths[0]["leave_soc"] = self.buckets
while len(open_paths) > 0 :
open_paths = sorted(open_paths, key=lambda d: d['end'], reverse=True)
current_path = open_paths.pop(0)
node_name = int(current_path.get("path")[-1].split("-")[0])
all_path_to_dest = self.get_list_of_paths_by_node_and_time_range(node_name,
current_path.get("start"),
current_path.get("end"),
current_path.get("leave_soc"))
for item in all_path_to_dest:
new_path = copy.deepcopy(current_path)
new_node_name = "{}-{}-{}-{}-{}-{}-{}".format(item.get("from"), item.get("arrived_at"),
item.get("leave_at"), item.get("arrived_soc"),
item.get("leave_soc"), item.get("charge_time"),
item.get("wait_time"))
new_path["path"].append(new_node_name)
edge_data = self.graph.get_edge_data(item.get("from"), node_name)
new_path["start"] -= (int(edge_data.get("travel_time") / 60) + item.get("charge_time"))
new_path["end"] -= (int(edge_data.get("travel_time") / 60) + item.get("charge_time"))
soc = self.req_energy(edge_data.get("distance")) + item["arrived_soc"]
if soc > 75:
leave_soc = [100]
elif soc > 50:
leave_soc = [75, 100]
else:
leave_soc = [50, 75, 100]
new_path["leave_soc"] = leave_soc
if new_path["start"] >= start_time:
if item.get("from") != source:
open_paths.append(new_path)
else:
complete_path_list.append(new_path)
return complete_path_list
def get_list_of_paths_by_node_and_time_range(self, node, start, end, leave_soc_list):
my_list = list()
my_set = set()
for b in self.buckets:
node_id = "{}-{}".format(node, b)
for item in self.route_table[node_id]:
if item.get("leave_at") <= end and item.get("leave_soc") in leave_soc_list:
if str(item) not in my_set:
my_set.add(str(item))
my_list.append(item)
return my_list
def req_energy(self, distance):
return int(distance / 1750)
def calculate_influence_and_assign_best_route(self, found_path, influence_list):
influence = np.zeros((800, 1440))
path_counter = 0
for paths in influence_list:
if paths:
path_counter += 1
for path in paths:
p = path.get("path")
for _id, stop in enumerate(p[1:-1]):
node_id = int(stop.split("-")[0])
end_ = int(p[_id + 2].split("-")[2])
start = int(p[_id + 2].split("-")[1])
influence[node_id][start:end_] += 1
print("number of influenced path: {}".format(path_counter))
all_path_influence_count = list()
for path in found_path:
path_influence_for_this_path = 0
p = path.get("path")
for _id, stop in enumerate(p[1:-1]):
node_id = int(stop.split("-")[0])
end_ = int(p[_id + 2].split("-")[2])
start = int(p[_id + 2].split("-")[1])
path_influence_for_this_path += np.sum(influence[node_id][start:end_])
all_path_influence_count.append(path_influence_for_this_path)
print(all_path_influence_count)
return all_path_influence_count
def calculate_influence_and_assign_best_route_v6(self, found_paths, influence_list, req):
total_path_lenghts = list()
for vehicle_id, paths in enumerate(influence_list):
inf_path_lengths = []
for i_path_id, path in enumerate(paths):
length = int(path["path"][1].split("-")[1])
inf_path_lengths.append(length)
total_path_lenghts.append(np.array(copy.deepcopy(inf_path_lengths)))
number_of_destroyed_paths = list()
inf_for_each_path = list()
for found_path_id, found_path in enumerate(found_paths):
total_path_lengths_for_this_round = copy.deepcopy(total_path_lenghts)
p = found_path.get("path")
conflict_for_this_path = set()
for _id, stop in enumerate(p[1:-1]):
node_id = int(stop.split("-")[0])
end_ = int(p[_id + 2].split("-")[2])
charge = int(p[_id + 2].split("-")[5])
start = end_ - charge
for vehicle_id, paths in enumerate(influence_list):
for i_path_id, path in enumerate(paths):
ip = path.get("path")
for i_id, stop in enumerate(ip[1:-1]):
i_node_id = int(stop.split("-")[0])
i_end_ = int(ip[i_id + 2].split("-")[2])
i_charge = int(ip[i_id + 2].split("-")[5])
i_start = end_ - i_charge
if node_id == i_node_id:
if start <= i_start <= end_ or start <= i_end_ <= end_:
conflict_for_this_path.add("{}-{}".format(vehicle_id, i_path_id))
min_before_assign = 0
for item in total_path_lengths_for_this_round:
if len(item):
min_before_assign += np.min(item)
for conf in conflict_for_this_path:
total_path_lengths_for_this_round[int(conf.split('-')[0])][int(conf.split('-')[1])] += threshold
min_after_assign = 0
for item in total_path_lengths_for_this_round:
if len(item):
min_after_assign += np.min(item)
number_of_destroyed_paths.append(len(conflict_for_this_path))
inf_for_each_path.append(min_after_assign - min_before_assign)
min_inf_path_id = np.argmin(np.array(inf_for_each_path))
inf_path = inf_for_each_path[min_inf_path_id]
locs = np.where(np.array(inf_for_each_path) <= inf_path)[0]
charge_time_dict = dict()
min_inf_path_id = -1
current_charge_time_min = 99999
for index_ in locs:
if number_of_destroyed_paths[index_] < current_charge_time_min:
current_charge_time_min = number_of_destroyed_paths[index_]
min_inf_path_id = index_
locs2 = np.where(np.array(number_of_destroyed_paths) <= current_charge_time_min)[0]
list_of_influence = self.calculate_influence_and_assign_best_route(found_paths, influence_list)
current_inf_min = 99999
for index2 in locs2:
if list_of_influence[index2] < current_inf_min:
current_inf_min = list_of_influence[index2]
min_inf_path_id = index2
self.assign_route(found_paths[min_inf_path_id])
def assign_route(self, path):
p = path.get("path")
for _id, stop in enumerate(p[1:-1]):
node_id = int(stop.split("-")[0])
end_ = int(p[_id + 2].split("-")[2])
start = int(p[_id + 2].split("-")[1])
charge_time = int(p[_id + 2].split("-")[5])
wait_time = int(p[_id + 2].split("-")[6])
print("assign route cs {}, start {}, charge {}, wait {}, end {}".format(node_id, start, charge_time, wait_time, end_))
assert start + wait_time + charge_time == end_
for i in range(start + wait_time, end_):
self.station_state[int(node_id)][i] += 1
def get_charge_at_station_old(self, node, start, amount, max_receive_power_for_this_vehicle):
if amount <= 0:
return 0, 0
if node <= 7:
return 0, 0
kw = (amount / 100) * 50
power = self.graph.nodes[node]["power"]
if power > max_receive_power_for_this_vehicle:
power = max_receive_power_for_this_vehicle
charge_time = int((kw / power) * 60)
charge_time = math.ceil(charge_time/5) * 5
x = start - 1
while True:
x += 1
if np.count_nonzero(self.station_state[node][x:x + charge_time] == self.outlet_count) ==0:
break
wait = x - start
return charge_time, wait
def get_charge_at_station(self, node, start, amount, max_receive_power_for_this_vehicle):
graph_time = 0
wait_time_ = 0
xt = datetime.datetime.now()
if amount <= 0:
return 0, 0
if node <= 7:
return 0, 0
kw = (amount / 100) * 50
power = self.powers[node]
if power > max_receive_power_for_this_vehicle:
power = max_receive_power_for_this_vehicle
charge_time = int((kw / power) * 60)
charge_time = math.ceil(charge_time / 5) * 5
charge_time +=2
wait = find_first_occurrence(start, node, charge_time, 1440, self.station_state[node])
return charge_time, wait
def refine_solutions_for_selective_look_ahead(self, list_of_paths):
forward_latest_leave_times = np.zeros((800, 1))
for path in list_of_paths:
p = path.get("path")
for _id, stop in enumerate(p[1:-1]):
node_id = int(stop.split("-")[0])
end_ = int(p[_id + 2].split("-")[2])
if forward_latest_leave_times[node_id][0] < end_:
forward_latest_leave_times[node_id][0] = end_
open_list = list()
candidate_list = list()
for node_id in range(800):
if forward_latest_leave_times[node_id][0] > 0:
candidate_list.append(node_id)
open_list.append({"node": node_id, "time": forward_latest_leave_times[node_id][0]})
for item in open_list:
for i in range(800):
shortest_travel = int(self.all_shortest_path_length[i].get(item["node"], 0) / 60)
if shortest_travel > 0:
if forward_latest_leave_times[i] < item["time"] - shortest_travel:
forward_latest_leave_times[i] = item["time"] - shortest_travel
return forward_latest_leave_times, candidate_list
if __name__ == '__main__':
threads = 1
threshold = 10
look_ahead = 1
outlet_count = 1
opts, args = getopt.getopt(sys.argv[1:], "-l:-t:-n:", ["lookahead=", "threshold=", "num="])
for opt, arg in opts:
if opt in ("-l", "--lookahead"):
look_ahead = int(arg)
elif opt in ("-t", "--threshold"):
threshold = int(arg)
elif opt in ("-n", "--num"):
threads = int(arg)
max_receive_power_list = [50, 60, 75, 80, 100]
with open("./requests_dynamic_10_percent_with_bucket.pkl", "rb") as f:
requests = pickle.load(f)
requests = sorted(requests, key=lambda d: d['start_time'])
for _id in range(len(requests)):
requests[_id]["id"] = _id
requests[_id]["max_receive_power"] = max_receive_power_list[_id % 5]
requests[_id]["soc"] = 100
t = datetime.datetime.now()
s = PEVRP()
s.run(requests, threads, threshold, look_ahead, outlet_count)
print(datetime.datetime.now() - t)