-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathOrderEnrichedRelativeAdjunctionsExamples.v
215 lines (176 loc) · 7.59 KB
/
OrderEnrichedRelativeAdjunctionsExamples.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
From Coq Require Import Morphisms.
Set Warnings "-notation-overridden,-ambiguous-paths".
From mathcomp Require Import all_algebra all_ssreflect boolp.
Set Warnings "notation-overridden,ambiguous-paths".
From SSProve.Mon Require Import SPropBase Base.
From SSProve.Relational Require Import OrderEnrichedCategory OrderEnrichedRelativeMonadExamples.
From SSProve.Crypt Require Import OrderEnrichedRelativeAdjunctions FreeProbProg ChoiceAsOrd Couplings Theta_exCP SubDistr.
Import SPropNotations.
(*
Let M: I → C be a J-relative monad.
Consider J♭ : I → I and R: C → C functors such that JL♭ ⊣ R
(the "transforming (left relative) adjunction")
M can be factored through its Kleisli: M = R^M ∘ L^M, with L^M ⊣ R^M
And there is a "transformed" left relative adjunction L^M ∘ L♭ ⊣ R ∘ R^M .
as well as the associated monad of this new adjunction (see AdjTransform in OrderEnrichedRelativeAdjunctions.)
*)
Section ConstantFunctor.
Context (C D : ord_category) (d : D).
Program Definition mkConstFunc : ord_functor C D := mkOrdFunctor (fun c => d) _ _ _ _.
Next Obligation.
auto with solve_subterm.
Defined.
Next Obligation.
cbv. auto with solve_subterm.
Qed.
Next Obligation.
cbv. intuition. rewrite ord_cat_law1. reflexivity.
Qed.
End ConstantFunctor.
(*
Lflat = _ x (S1,S2) : chTy² → chTy²
computational relational monad : chty² → Type²
R = S → _ : Type² → Type²
*)
Section DomainStateAdj.
Context (S1 : ord_choiceType) (S2 : ord_choiceType).
(*First we define Lflat : chTy² -> chTy² which is just _ x S*)
Let IdAndS1 := functor_to_prod_cat (ord_functor_id ord_choiceType)
(mkConstFunc ord_choiceType ord_choiceType S1).
Let IdAndS2 := functor_to_prod_cat (ord_functor_id ord_choiceType)
(mkConstFunc ord_choiceType ord_choiceType S2).
Definition unaryTimesS1 := ord_functor_comp IdAndS1 F_choice_prod.
Definition unaryTimesS2 := ord_functor_comp IdAndS2 F_choice_prod.
Definition binaryTimesS := prod_functor (unaryTimesS1) (unaryTimesS2).
Let Lflat := binaryTimesS.
(*Next we define R = S -> _ : TypeCat² -> TypeCat² *)
Program Definition ToTheS (T : ord_choiceType) : ord_functor TypeCat TypeCat :=
mkOrdFunctor (fun A => (T -> A)) _ _ _ _.
Next Obligation.
move=> T A B. cbv. move=> f1 f2. move=> H12. move=> g. apply boolp.funext.
move=> t. destruct (H12 (g t)). reflexivity.
Qed.
Let TypeCat_squ := prod_cat TypeCat TypeCat.
Definition binaryToTheS : ord_functor TypeCat_squ TypeCat_squ :=
prod_functor (ToTheS S1) (ToTheS S2).
Let R := binaryToTheS.
Let J := prod_functor (choice_incl) (choice_incl).
(*Now we exhibit the transforming adjunction J ∘ Lflat ⊣ R*)
Let Chi_DomainStateAdj0 : forall A : prod_cat (oppo (prod_cat ord_choiceType ord_choiceType)) (prod_cat TypeCat TypeCat),
OrdCat ⦅ leftHom (ord_functor_comp Lflat J) A; rightHom J R A ⦆.
move=> [[C1 C2][X1 X2]]. simpl. unshelve econstructor.
move=> [p q]. split. move=> c1 s1. apply p. exact (c1 , s1).
move=> c2 s2. apply q. exact (c2,s2).
simpl. cbv. intuition. apply boolp.funext. move=> s1.
eapply H0.
apply boolp.funext. move=> s2. eapply H1.
Defined.
Program Definition Chi_DomainStateAdj : leftAdjunctionSituation J (ord_functor_comp Lflat J) R :=
mkNatIso _ _ (Chi_DomainStateAdj0) _ _ _ _.
Next Obligation.
move=> [C1 C2]. unshelve econstructor. simpl.
move=> [p q]. split. move=> [c1 s1]. eapply p. exact c1. exact s1.
move=> [c1 s2]. eapply q. exact c1. exact (s2).
cbv. intuition. move: H0. move=> /(_ a) H0. destruct H0. reflexivity.
move: H1. move=> /(_ a) H1. destruct H1. reflexivity.
Defined.
Next Obligation.
move=> [[C1 C2] [A1 A2]].
move=> [[C1' C2'] [A1' A2']].
move=> [f f'].
apply sig_eq. simpl. apply funext. move=> [p q].
simpl. f_equal.
Qed.
Next Obligation.
move=> [[C1 C2] [A1 A2]].
apply sig_eq. simpl.
apply funext. move=> [bla1 bla2].
simpl. reflexivity.
Qed.
Next Obligation.
move=> [[C1 C2] [A1 A2]].
apply sig_eq. simpl.
apply funext. move=> [bla1 bla2].
simpl. f_equal. apply funext. move=> [c1 s1]. reflexivity.
apply funext. move=> [c2 s2]. reflexivity.
Qed.
Definition StT_rFreeProb_squ :=
AdjTransform (rFreeProb_squ) Lflat R Chi_DomainStateAdj.
End DomainStateAdj.
(*
Lflat = _ × (S1,S2) : chty² → chty²
monad to transform = relational spec monad : chty² → Preorder ("OrdCat")
R = S1×S2 → _ : Preorder → Preorder
*)
Section CodomainStateAdj.
Context (S1 S2 : ord_choiceType).
Let S := chDiscr (F_choice_prod ⟨S1 , S2⟩).
Let J := ord_functor_comp F_choice_prod chDiscr.
Let Lflat := binaryTimesS S1 S2.
Let SConst := mkConstFunc OrdCat (oppo OrdCat) S.
Let Ordid := ord_functor_id OrdCat.
Let preHom := functor_to_prod_cat SConst Ordid.
Definition ToTheS_OrdCat : ord_functor OrdCat OrdCat :=
ord_functor_comp preHom (HomF OrdCat).
Let R := ToTheS_OrdCat.
Definition Chi_CodomainStateAdj0 :
forall A : prod_cat (oppo (prod_cat ord_choiceType ord_choiceType)) OrdCat,
OrdCat ⦅ leftHom (ord_functor_comp Lflat J) A; rightHom J R A ⦆.
move=> [[C1 C2] O]. unshelve econstructor.
simpl. move=> [p pp]. unshelve econstructor.
move=> [c1 c2]. unshelve econstructor.
move=> [s1 s2]. apply p. easy.
(*Proper*)
move=> [s1 s2] [s1' s2'] Hs.
epose (Hs1 := (f_equal fst Hs)). simpl in Hs1. rewrite Hs1.
epose (Hs2 := (f_equal snd Hs)). simpl in Hs2. rewrite Hs2.
reflexivity.
(*Proper*)
cbv ; intuition. destruct H. reflexivity.
move=> [bla Hb] [bla' Hb']. move=> Hbla. simpl.
move=> [c1 c2] [s1 s2]. simpl.
cbv in Hbla. apply Hbla.
Defined.
Definition invChi_CodomainStateAdj0 :
forall A : prod_cat (oppo (prod_cat ord_choiceType ord_choiceType)) OrdCat,
OrdCat ⦅ rightHom J R A; leftHom (ord_functor_comp Lflat J) A ⦆.
move=> [[C1 C2] O]. unshelve econstructor. simpl.
move=> [gg gproof]. unshelve econstructor. move=> [[c1 s1] [c2 s2]].
unshelve eapply ((gg _)∙1). exact (c1,c2). exact (s1,s2).
move=> [[c1 s1] [c2 s2]]. move=> [[c1' s1'] [c2' s2']].
move=> [Hc1 Hs1 Hc2 Hs2]. rewrite Hc1 Hs1 Hc2 Hs2. reflexivity.
move=> [bla Hb] [bla' Hb']. move=> Hbla. simpl.
move=> [[c1 s1] [c2 s2]]. cbv in Hbla. apply Hbla.
Defined.
Program Definition Chi_CodomainStateAdj : leftAdjunctionSituation J (ord_functor_comp Lflat J) R :=
mkNatIso _ _ (Chi_CodomainStateAdj0) invChi_CodomainStateAdj0 _ _ _.
(* Next Obligation. *)
(* move=> [[C1 C2] O]. unshelve econstructor. simpl. *)
(* move=> [gg gproof]. unshelve econstructor. move=> [[c1 s1] [c2 s2]]. *)
(* unshelve eapply ((gg _)∙1). exact (c1,c2). exact (s1,s2). *)
(* cbv. intuition. destruct H. reflexivity. *)
(* cbv. intuition. *)
(* Defined. *)
Next Obligation.
move=> [[A1 A2] OA] [[B1 B2] OB]. simpl. move=>[[u v] [w wp] ].
apply sig_eq ; simpl. apply funext ; move=> [topp toppAux]. simpl.
apply sig_eq ; simpl. apply funext ; move=> [b1 b2]. simpl.
apply sig_eq ; simpl. apply funext ; move=> [s1 s2]. simpl.
reflexivity.
Qed.
Next Obligation.
move=> [[C1 C2] O].
apply sig_eq ; simpl. apply funext ; move=> [gg ggAux]. simpl.
apply sig_eq ; simpl. apply funext ; move=> [c1 c2]. simpl.
apply sig_eq ; simpl. apply funext ; move=> [s1 s2]. simpl.
reflexivity.
Qed.
Next Obligation.
move=> [[C1 C2] O].
apply sig_eq ; simpl. apply funext ; move=> [gg ggAux]. simpl.
apply sig_eq ; simpl. apply funext ; move=> [[c1 s1] [c2 s2]]. simpl.
easy.
Qed.
Definition StT_WRelprop :=
AdjTransform (WRelProp) Lflat R Chi_CodomainStateAdj.
End CodomainStateAdj.