-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_train.py
250 lines (195 loc) · 8.57 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
__author__ = "Steve Ataucuri"
__copyright__ = "Sprace.org.br"
__version__ = "1.0.0"
import sys
import os
import argparse
import json
from sklearn.model_selection import train_test_split
import datetime as dt
from core.data.data_loader import *
from core.models.lstm import ModelLSTM, ModelLSTMParallel, GaussianLSTM
from core.models.cnn import ModelCNN, ModelCNNParallel
from core.models.mlp import ModelMLP, GaussianMLP
from core.models.rnn import ModelRNN
from core.utils.metrics import *
from core.utils.utils import *
import numpy as np
def parse_args():
"""Parse arguments."""
# Parameters settings
parser = argparse.ArgumentParser(description="LSTM implementation ")
# Dataset setting
parser.add_argument('--config', type=str, default="config.json", help='Configuration file')
parser.add_argument('--dataset', type=str, help='Path to dataset')
parser.add_argument('--cylindrical', type=str, help='Type of Coordenates system')
parser.add_argument('--load', type=str, help='this param load model')
# parse the arguments
args = parser.parse_args()
return args
def manage_models(config):
type_model = config['model']['name']
model = None
if type_model == 'lstm': #simple LSTM
model = ModelLSTM(config)
elif type_model == 'gaussian-lstm':
model = GaussianLSTM(config)
elif type_model == 'lstm-parallel':
model = ModelLSTMParallel(config)
elif type_model == 'cnn':
model = ModelCNN(config)
elif type_model == 'cnn-parallel':
model = ModelCNNParallel(config)
elif type_model == 'mlp':
model = ModelMLP(config)
elif type_model == 'gaussian-mlp':
model = GaussianMLP(config)
elif type_model == 'simple-rnn':
model = ModelRNN(config)
return model
def main():
args = parse_args()
# load configurations of model and others
configs = json.load(open(args.config, 'r'))
# create defaults dirs
output_bin = configs['paths']['bin_dir']
output_path = configs['paths']['save_dir']
output_logs = configs['paths']['log_dir']
time_steps = configs['model']['layers'][0]['input_timesteps'] # the number of points or hits
t_features = configs['model']['layers'][0]['input_features'] # the number of features of a tensor
n_features = configs['data']['features'] # the number of features of data input
data_file = configs['data']['filename']
split = configs['data']['train_split'] # the number of features of each hits
cylindrical = configs['data']['cylindrical'] # set to polar or cartesian coordenates
normalise = configs['data']['normalise']
num_hits = configs['data']['num_hits']
type_norm = configs['data']['type_norm']
points_3d = configs['data']['points_3d'] # what kind of points: (rho, eta, phi) or (eta, phi)
type_model = configs['model']['name']
optim = configs['model']['optimizer']
arch = configs['model']['layers']
is_parallel = configs['model']['isparallel']
over_write = configs['model']['overwrite']
loadModel = configs['training']['load_model']
validation_split = configs['training']['validation']
epochs = configs['training']['epochs']
batch = configs['training']['batch_size']
shuffle_train = configs['training']['shuffle']
if args.dataset is not None:
data_file = args.dataset
configs['data']['filename'] = data_file
if args.cylindrical is not None:
cylindrical = True if args.cylindrical == "True" else False
configs['data']['cylindrical'] = cylindrical
if args.load is not None:
loadModel = True if args.load == "True" else False
configs['training']['load_model'] = loadModel
#create a encryp name for dataset
path_to, filename = os.path.split(data_file)
orig_ds_name = filename
encryp_ds_name = get_unique_name(orig_ds_name)
decryp_ds_name = get_decryp_name(encryp_ds_name)
output_encry = os.path.join(output_path, encryp_ds_name)
if os.path.isdir(output_bin) == False:
os.mkdir(output_bin)
if os.path.isdir(output_path) == False:
os.mkdir(output_path)
if os.path.isdir(output_encry) == False:
os.mkdir(output_encry)
if os.path.isdir(output_logs) == False:
os.mkdir(output_logs)
if type_norm == "zscore":
kind_norm = KindNormalization.Zscore
elif type_norm == "maxmin":
kind_norm = KindNormalization.Scaling
# prepare data set
data = Dataset(data_file, split, cylindrical, num_hits, kind_norm, points_3d=points_3d)
X_train, y_train = data.get_training_data(n_hit_in=time_steps, n_hit_out=1,
n_features=n_features, normalise=normalise)
print('[Data] shape supervised: X%s y%s :' % (X_train.shape, y_train.shape))
if normalise:
data.save_scale_param(output_encry)
if type_model == 'mlp' or type_model == 'gaussian-mlp':
pass
if type_model == 'lstm' or type_model == 'cnn' or type_model == 'gaussian-lstm':
if not is_parallel:
X_train = data.reshape3d(X_train, time_steps, t_features)
elif type_model == 'lstm-parallel' or type_model == 'cnn-parallel':
if not is_parallel:
print('DEBUG')
return
X_train = np.reshape(X_train.values, (X_train.shape[0], time_steps, n_features))
#X_train = data.reshape3d(X_train, time_steps, n_features)
y_train = np.reshape(y_train.values, (y_train.shape[0], n_features))
X1 = X_train[:,:,0].reshape(X_train.shape[0], X_train.shape[1], t_features)
X2 = X_train[:,:,1].reshape(X_train.shape[0], X_train.shape[1], t_features)
X3 = X_train[:,:,2].reshape(X_train.shape[0], X_train.shape[1], t_features)
Y1 = y_train[:,0].reshape(y_train.shape[0], t_features)
Y2 = y_train[:,1].reshape(y_train.shape[0], t_features)
Y3 = y_train[:,2].reshape(y_train.shape[0], t_features)
X_train = [X1, X2, X3]
#print('[Data] shape data X_train.shape:', X_train.shape)
print('[Data] shape data y_train.shape:', y_train.shape)
model = manage_models(configs)
if model is None:
print('Please instance model')
return
show_metrics = configs['training']['show_metrics']
report = ""
if cylindrical:
coord = 'cylin'
else:
coord = 'xyz'
ident_name = model.name + "_" + coord
timer = Timer()
if not loadModel:
if not over_write:
# if exist, please used the compiled model!
if model.exist_model(model.save_fnameh5):
print("[Warning] Please there is a previous model compiled (%s) for %s file."
% (model.save_fnameh5, data_file))
return
model.build_model()
save_fname = os.path.join(output_encry, 'architecture_%s.png' % ident_name)
model.save_architecture(save_fname)
timer.start()
# in-memory training
history = model.train(
x=X_train,
y=y_train,
validation=validation_split,
epochs=epochs,
batch_size=batch,
verbose=True,
shuffle=shuffle_train
)
#if show_metrics:
#report = evaluate_training(history, output_encry, ident_name)
timer.stop()
elif loadModel:
if not model.load_model():
print ('[Error] please change the config file : load_model')
return
# save results in a file
orig_stdout = sys.stdout
f = open(os.path.join(output_encry, 'results-train.txt'), 'a')
sys.stdout = f
print("[Output] Train results ")
print("---Parameters--- ")
print("\t Model Name : ", model.name)
print("\t Dataset : ", model.orig_ds_name)
print("\t Total tracks : ", len(X_train))
print("\t Path saved : ", model.save_fnameh5)
print("\t Coordenate type : ", coord)
#print("\t Compiled date : %s taken %s" % (timer.start_dt.strftime("%d/%m/%Y %H:%M:%S"), timer.taken()))
print("\t Model scaled : ", model.normalise)
print("\t Model Optimizer : ", optim)
print("\t Model batch_size : ", batch)
print("\t Model epochs : %s stopped %s " % (epochs, model.stopped_epoch))
print("\t Accuracy : ", report)
print("\t Architecture : ", arch)
sys.stdout = orig_stdout
f.close()
print('[Output] All results saved at %s directory it results-train.txt file. Please use notebooks/plot_prediction.ipynb' % output_encry)
if __name__=='__main__':
main()