-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_mlp.py
228 lines (173 loc) · 7.88 KB
/
main_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
__author__ = "Steve Ataucuri"
__copyright__ = "Sprace.org.br"
__version__ = "1.0.0"
import sys
import os
import argparse
import json
from sklearn.model_selection import train_test_split
from core.data.data_loader import *
from core.models.lstm import ModelLSTM, ModelLSTMParalel, ModelLSTMCuDnnParalel
from core.models.cnn import ModelCNN
from core.models.mlp import ModelMLP
from core.models.rnn import ModelRNN
from core.utils.metrics import *
from core.utils.utils import *
import numpy as np
def parse_args():
"""Parse arguments."""
# Parameters settings
parser = argparse.ArgumentParser(description="MLP Implementation")
# Dataset setting
parser.add_argument('--config', type=str, default="config.json", help='Configuration file')
parser.add_argument('--dataset', type=str, help='Path to dataset')
parser.add_argument('--cylindrical', type=str, help='Type of Coordenates system')
# parse the arguments
args = parser.parse_args()
return args
def manage_models(config):
type_model = config['model']['name']
model = None
if type_model == 'lstm': #simple LSTM
model = ModelLSTM(config)
elif type_model == 'lstm-paralel':
model = ModelLSTMParalel(config)
elif type_model == 'cnn':
model = ModelCNN(config)
elif type_model == 'mlp':
model = ModelMLP(config)
elif type_model == 'simplernn':
model = ModelRNN(config)
return model
def main():
args = parse_args()
# load configurations of model and others
configs = json.load(open(args.config, 'r'))
# create defaults dirs
output_path = configs['paths']['save_dir']
output_logs = configs['paths']['log_dir']
data_file = configs['data']['filename']
if os.path.isdir(output_path) == False:
os.mkdir(output_path)
if os.path.isdir(output_logs) == False:
os.mkdir(output_logs)
time_steps = configs['model']['layers'][0]['input_timesteps'] # the number of points or hits
num_features = configs['model']['layers'][0]['input_features'] # the number of features of each hits
split = configs['data']['train_split'] # the number of features of each hits
cylindrical = configs['data']['cylindrical'] # set to polar or cartesian coordenates
normalise = configs['data']['normalise']
num_hits = configs['data']['num_hits']
if args.dataset is not None:
data_file = args.dataset
configs['data']['filename'] = data_file
if args.cylindrical is not None:
cylindrical = True if args.cylindrical == "True" else False
configs['data']['cylindrical'] = cylindrical
# prepare data set
data = Dataset(data_file, KindNormalization.Zscore)
dataset = data.get_training_data(cylindrical=cylindrical, hits=num_hits)
#dataset = dataset.iloc[0:2640,0:]
#dataset = dataset.iloc[0:31600,0:]
print('[Data] new shape :', dataset.shape)
print("[Data] Converting to supervised ...")
X, y = data.convert_to_supervised(dataset.values, n_hit_in=time_steps,
n_hit_out=1, n_features=num_features, normalise=normalise)
print('[Data] shape supervised: X%s y%s :' % (X.shape, y.shape))
# shuffle is True for default value
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1-split, shuffle=False, random_state=42)
print('[Data] shape data X_train.shape:', X_train.shape)
print('[Data] shape data X_test.shape:', X_test.shape)
print('[Data] shape data y_train.shape:', y_train.shape)
print('[Data] shape data y_test.shape:', y_test.shape)
model = manage_models(configs)
if model is None:
print('Please instance model')
return
loadModel = configs['training']['load_model']
if loadModel == False:
model.build_model()
# in-memory training
history = model.train(
x=X_train,
y=y_train,
epochs = configs['training']['epochs'],
batch_size = configs['training']['batch_size']
)
evaluate_training(history, output_path)
elif loadModel == True:
if not model.load_model():
print ('[Error] please change the config file : load_model')
return
print('[Data] Predicting dataset with input ...', X_test.shape)
predicted = model.predict_one_hit(X_test)
print('[Data] shape predicted output ', predicted.shape)
print('[Data] shape y_test ', y_test.shape)
y_predicted = np.reshape(predicted, (predicted.shape[0]*predicted.shape[1], 1))
y_true_ = data.reshape2d(y_test, 1)
print('[Data] new shape y_test, y_true_ ', y_true_.shape)
print('[Data] new shape y_predicted ', y_predicted.shape)
# we need to transform to original data
if normalise:
y_test_orig = data.inverse_transform_y(y_test)
y_predicted_orig = data.inverse_transform_y(predicted)
else:
y_test_orig = y_test
y_predicted_orig = predicted
if cylindrical:
coord = 'cylin'
else:
coord = 'xyz'
# save results in a file
orig_stdout = sys.stdout
f = open('results/results.txt', 'a')
sys.stdout = f
print("[Output] Results ")
print("---Parameters--- ")
print("\t Model Name : ", model.name)
print("\t Dataset : ", model.orig_ds_name)
print("\t Tracks : ", len(dataset))
print("\t Model saved : ", model.save_fnameh5)
print("\t Coordenates : ", coord)
print("\t Model stand : ", model.normalise)
# calculing scores
result = calc_score(y_true_, y_predicted, report=True)
#r2, rmse, rmses = evaluate_forecast(y_test, predicted)
r2, rmse, rmses = evaluate_forecast(y_test_orig, y_predicted_orig)
summarize_scores(r2, rmse,rmses)
sys.stdout = orig_stdout
f.close()
print('[Data] shape y_test ', y_test.shape)
print('[Data] shape predicted ', predicted.shape)
print('[Data] shape y_test_orig ', y_test_orig.shape)
print('[Data] shape y_predicted_orig ', y_predicted_orig.shape)
#X = data.get_training_data(cylindrical=False, hit=10)
X_train, X_test_new = train_test_split(dataset, test_size=1-split, shuffle=False, random_state=42)
#X_train, X_test = data.train_test_split(dataset, y, train_size=split)
# 18 fields
y_predicted_orig = pd.DataFrame(y_predicted_orig)
y_predicted_orig = data.convert_supervised_to_normal(y_predicted_orig.values, n_hit_in=4, n_hit_out=1, hits=10)
y_predicted_orig = pd.DataFrame(y_predicted_orig)
print('y_predicted_orig shape ', y_predicted_orig.shape)
y_true_orig = pd.DataFrame(y_test_orig)
y_true_orig = data.convert_supervised_to_normal(y_true_orig.values, n_hit_in=4, n_hit_out=1, hits=10)
y_true_orig = pd.DataFrame(y_true_orig)
print('y_true_orig shape ', y_true_orig.shape)
x_true = X_test_new.iloc[:,0:time_steps*num_features]
y_true = X_test_new.iloc[:,time_steps*num_features:]
if cylindrical:
y_true_orig.to_csv(os.path.join(output_path, 'y_true_%s_cylin.csv' % configs['model']['name']),
header=False, index=False)
y_predicted_orig.to_csv(os.path.join(output_path, 'y_pred_%s_cylin.csv' % configs['model']['name']),
header=False, index=False)
x_true.to_csv(os.path.join(output_path, 'x_true_%s_cylin.csv' % configs['model']['name']),
header=False, index=False)
else:
y_true_orig.to_csv(os.path.join(output_path, 'y_true_%s_xyz.csv' % configs['model']['name']),
header=False, index=False)
y_predicted_orig.to_csv(os.path.join(output_path, 'y_pred_%s_xyz.csv' % configs['model']['name']),
header=False, index=False)
x_true.to_csv(os.path.join(output_path, 'x_true_%s_xyz.csv' % configs['model']['name']),
header=False, index=False)
print('[Output] Results saved in files %', output_path)
if __name__=='__main__':
main()