-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
207 lines (185 loc) · 8.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# from model import ResNet18
# import torch
# import torch.nn as nn
# from validate import validate
# from tqdm import tqdm
# def train(train_loader, test_loader, writer, epochs, lr, device, model_dict):
# best_l = 1000
# model = ResNet18().to(device)
# optimizer_e = torch.optim.Adam(model.parameters(), lr=lr)
# criterion = nn.MSELoss()
# for epoch in range(epochs):
# model.train()
# train_rmes, train_mae, train_loss = 0., 0., 0.
# step = 0
# loader = tqdm(train_loader)
# for img, label,_ in loader:
# img, label = img.to(device), label.to(device).to(torch.float32)
# optimizer_e.zero_grad()
# score = model(img)
# loss = criterion(score, label)
# train_loss += loss.item()
# rmse = torch.sqrt(torch.pow(torch.abs(score - label), 2).mean()).item()
# train_rmes += rmse
# mae = torch.abs(score - label).mean().item()
# train_mae += mae
# loss.backward()
# optimizer_e.step()
# step += 1
# loader.set_description("Epoch:{} Step:{} RMSE:{:.2f} MAE:{:.2f}".format(epoch, step, rmse, mae))
# train_rmes /= step
# train_mae /= step
# train_loss /= step
# model.eval()
# val_rmes, val_mae, val_loss = validate(model, test_loader, device, criterion)
# writer.log_train(train_rmes, train_mae, train_loss, val_rmes, val_mae, val_loss, epoch)
# if val_loss < best_l:
# torch.save({'ResNet': model.state_dict()}, '{}/ResNet.pth'.format(model_dict))
# print('Save model!,Loss Improve:{:.2f}'.format(best_l - val_loss))
# best_l = val_loss
# print('Train RMSE:{:.2f} MAE:{:.2f} \t Val RMSE:{:.2f} MAE:{:.2f}'.format(train_rmes, train_mae, val_rmes,
# val_mae))
#——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
# from model import ResNet18
# import torch
# import torch.nn as nn
# from validate import validate
# from tqdm import tqdm
# from torch.utils.data import DataLoader
# from torchvision import datasets, transforms
# from writer import MyWriter
# print("Starting script...") # 打印调试信息
# def train(train_loader, test_loader, writer, epochs, lr, device):
# best_l = 1000
# model = ResNet18().to(device)
# print("Model created and moved to device.") # 打印模型创建信息
# # 使用Adam优化器,学习率设置为0.001
# optimizer_e = torch.optim.Adam(model.parameters(), lr=0.001)
# criterion = nn.MSELoss()
# # 设置训练轮数为20
# for epoch in range(20):
# model.train()
# train_rmes, train_mae, train_loss = 0., 0., 0.
# step = 0
# loader = tqdm(train_loader)
# for img, label in loader:
# img, label = img.to(device), label.to(device).to(torch.float32)
# optimizer_e.zero_grad()
# score = model(img)
# label = label.view(-1, 1) # 添加这行代码
# loss = criterion(score, label)
# train_loss += loss.item()
# rmse = torch.sqrt(torch.pow(torch.abs(score - label), 2).mean()).item()
# train_rmes += rmse
# mae = torch.abs(score - label).mean().item()
# train_mae += mae
# loss.backward()
# optimizer_e.step()
# step += 1
# loader.set_description("Epoch:{} Step:{} RMSE:{:.2f} MAE:{:.2f}".format(epoch, step, rmse, mae))
# train_rmes /= step
# train_mae /= step
# train_loss /= step
# model.eval()
# val_rmes, val_mae, val_loss = validate(model, test_loader, device, criterion)
# writer.log_train(train_rmes, train_mae, train_loss, val_rmes, val_mae, val_loss, epoch)
# if val_loss < best_l:
# torch.save({'ResNet': model.state_dict()}, './ResNet.pth')
# print('Save model!,Loss Improve:{:.2f}'.format(best_l - val_loss))
# best_l = val_loss
# print('Train RMSE:{:.2f} MAE:{:.2f} \t Val RMSE:{:.2f} MAE:{:.2f}'.format(train_rmes, train_mae, val_rmes,
# val_mae))
# print("Script finished.") # 打印脚本完成信息
# # 创建数据加载器
# transform = transforms.Compose([
# transforms.Resize((224,224)),
# transforms.ToTensor(),
# transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
# ])
# train_dataset = datasets.ImageFolder(root='G:/keep/train', transform=transform)
# train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# test_dataset = datasets.ImageFolder(root='G:/keep/test', transform=transform)
# test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# # 创建日志记录器
# writer = MyWriter('./logs')
# # 设置训练轮数
# epochs = 20
# # 设置学习率
# lr = 0.001
# # 设置设备
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# # 调用train函数
# train(train_loader, test_loader, writer, epochs, lr, device)
#——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
from model import ResNet18
import torch
import torch.nn as nn
from validate import validate
from tqdm import tqdm
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from writer import MyWriter
print("Starting script...") # 打印调试信息
def train(train_loader, test_loader, writer, epochs, lr, device):
best_l = 1000
model = ResNet18().to(device)
print("Model created and moved to device.") # 打印模型创建信息
# 使用Adam优化器,学习率设置为0.001
optimizer_e = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# 设置训练轮数为20
for epoch in range(20):
model.train()
train_rmes, train_mae, train_loss = 0., 0., 0.
step = 0
loader = tqdm(train_loader)
for img, label in loader:
img, label = img.to(device), label.to(device).to(torch.float32)
print(f"Image shape: {img.shape}, Label shape: {label.shape}") # 打印图像和标签的形状
optimizer_e.zero_grad()
score = model(img)
print(f"Score shape: {score.shape}") # 打印模型输出的形状
label = label.view(-1, 1) # 添加这行代码
loss = criterion(score, label)
train_loss += loss.item()
rmse = torch.sqrt(torch.pow(torch.abs(score - label), 2).mean()).item()
train_rmes += rmse
mae = torch.abs(score - label).mean().item()
train_mae += mae
loss.backward()
optimizer_e.step()
step += 1
loader.set_description("Epoch:{} Step:{} RMSE:{:.2f} MAE:{:.2f}".format(epoch, step, rmse, mae))
train_rmes /= step
train_mae /= step
train_loss /= step
model.eval()
val_rmes, val_mae, val_loss = validate(model, test_loader, device, criterion)
writer.log_train(train_rmes, train_mae, train_loss, val_rmes, val_mae, val_loss, epoch)
if val_loss < best_l:
torch.save({'ResNet': model.state_dict()}, './ResNet.pth')
print('Save model!,Loss Improve:{:.2f}'.format(best_l - val_loss))
best_l = val_loss
print('Train RMSE:{:.2f} MAE:{:.2f} \t Val RMSE:{:.2f} MAE:{:.2f}'.format(train_rmes, train_mae, val_rmes,
val_mae))
print("Script finished.") # 打印脚本完成信息
# 创建数据加载器
transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.ImageFolder(root='G:/keep/train', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = datasets.ImageFolder(root='G:/keep/test', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# 创建日志记录器
writer = MyWriter('./logs')
# 设置训练轮数
epochs = 20
# 设置学习率
lr = 0.001
# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 调用train函数
train(train_loader, test_loader, writer, epochs, lr, device)