-
Notifications
You must be signed in to change notification settings - Fork 0
/
db 3.json
1 lines (1 loc) · 79.1 KB
/
db 3.json
1
{"meta":{"version":1,"warehouse":"4.0.0"},"models":{"Asset":[{"_id":"themes/hexo-theme-next-master/source/images/algolia_logo.svg","path":"images/algolia_logo.svg","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/css/main.styl","path":"css/main.styl","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/apple-touch-icon-next.png","path":"images/apple-touch-icon-next.png","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/avatar.gif","path":"images/avatar.gif","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-nc-nd.svg","path":"images/cc-by-nc-nd.svg","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-nc-sa.svg","path":"images/cc-by-nc-sa.svg","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-nc.svg","path":"images/cc-by-nc.svg","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-nd.svg","path":"images/cc-by-nd.svg","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-sa.svg","path":"images/cc-by-sa.svg","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/cc-by.svg","path":"images/cc-by.svg","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/cc-zero.svg","path":"images/cc-zero.svg","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/favicon-16x16-next.png","path":"images/favicon-16x16-next.png","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/favicon-32x32-next.png","path":"images/favicon-32x32-next.png","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/images/logo.svg","path":"images/logo.svg","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/js/algolia-search.js","path":"js/algolia-search.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/js/bookmark.js","path":"js/bookmark.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/js/local-search.js","path":"js/local-search.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/js/motion.js","path":"js/motion.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/js/next-boot.js","path":"js/next-boot.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/js/utils.js","path":"js/utils.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/lib/anime.min.js","path":"lib/anime.min.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/js/schemes/muse.js","path":"js/schemes/muse.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/js/schemes/pisces.js","path":"js/schemes/pisces.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/lib/velocity/velocity.min.js","path":"lib/velocity/velocity.min.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/lib/velocity/velocity.ui.min.js","path":"lib/velocity/velocity.ui.min.js","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/lib/font-awesome/css/all.min.css","path":"lib/font-awesome/css/all.min.css","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/lib/font-awesome/webfonts/fa-brands-400.woff2","path":"lib/font-awesome/webfonts/fa-brands-400.woff2","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/lib/font-awesome/webfonts/fa-regular-400.woff2","path":"lib/font-awesome/webfonts/fa-regular-400.woff2","modified":0,"renderable":1},{"_id":"themes/hexo-theme-next-master/source/lib/font-awesome/webfonts/fa-solid-900.woff2","path":"lib/font-awesome/webfonts/fa-solid-900.woff2","modified":0,"renderable":1}],"Cache":[{"_id":"source/tags/index.md","hash":"9a71390c78a266ba2d8507fd5c2b80fe1e22a326","modified":1642837356591},{"_id":"source/.DS_Store","hash":"406eb68229628ca2201fa362f2332462807592d0","modified":1642833964024},{"_id":"source/_posts/Stochastic Calculus.md","hash":"848e28863bbce53caf309a61b30042156c9fbb32","modified":1642840261009},{"_id":"source/_posts/hello world.md","hash":"7988b8fc95813d33348dda2b5955a7be18072bca","modified":1642837624314},{"_id":"source/_posts/.DS_Store","hash":"a01c4cdac77fa3c033a529cd30318957ca57b30c","modified":1642837585169},{"_id":"source/categories/index.md","hash":"9c57f9be2f4a6266aeb3b5064ef3651a68bb39e9","modified":1642837369631},{"_id":"themes/hexo-theme-next-master/.editorconfig","hash":"8570735a8d8d034a3a175afd1dd40b39140b3e6a","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.eslintrc.json","hash":"cc5f297f0322672fe3f684f823bc4659e4a54c41","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.gitattributes","hash":"a54f902957d49356376b59287b894b1a3d7a003f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/LICENSE.md","hash":"18144d8ed58c75af66cb419d54f3f63374cd5c5b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.gitignore","hash":"56f3470755c20311ddd30d421b377697a6e5e68b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.stylintrc","hash":"2cf4d637b56d8eb423f59656a11f6403aa90f550","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.travis.yml","hash":"ecca3b919a5b15886e3eca58aa84aafc395590da","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/README.md","hash":"9b4b7d66aca47f9c65d6321b14eef48d95c4dff1","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/package.json","hash":"62fad6de02adbbba9fb096cbe2dcc15fe25f2435","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/crowdin.yml","hash":"e026078448c77dcdd9ef50256bb6635a8f83dca6","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/CODE_OF_CONDUCT.md","hash":"aa4cb7aff595ca628cb58160ee1eee117989ec4e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/gulpfile.js","hash":"1b4fc262b89948937b9e3794de812a7c1f2f3592","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/_config.yml","hash":"19e270a5fc3cbdf409b5b84c34ff7389f9fc95f8","modified":1642837871082},{"_id":"themes/hexo-theme-next-master/.github/CONTRIBUTING.md","hash":"e554931b98f251fd49ff1d2443006d9ea2c20461","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/config.yml","hash":"1d3f4e8794986817c0fead095c74f756d45f91ed","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/PULL_REQUEST_TEMPLATE.md","hash":"1a435c20ae8fa183d49bbf96ac956f7c6c25c8af","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/issue-close-app.yml","hash":"7cba457eec47dbfcfd4086acd1c69eaafca2f0cd","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/issue_label_bot.yaml","hash":"fca600ddef6f80c5e61aeed21722d191e5606e5b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/lock.yml","hash":"61173b9522ebac13db2c544e138808295624f7fd","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/mergeable.yml","hash":"0ee56e23bbc71e1e76427d2bd255a9879bd36e22","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/release-drafter.yml","hash":"3cc10ce75ecc03a5ce86b00363e2a17eb65d15ea","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/stale.yml","hash":"fdf82de9284f8bc8e0b0712b4cc1cb081a94de59","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/support.yml","hash":"d75db6ffa7b4ca3b865a925f9de9aef3fc51925c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/AGPL3.md","hash":"0d2b8c5fa8a614723be0767cc3bca39c49578036","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/AUTHORS.md","hash":"10135a2f78ac40e9f46b3add3e360c025400752f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/INSTALLATION.md","hash":"af88bcce035780aaa061261ed9d0d6c697678618","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/DATA-FILES.md","hash":"cddbdc91ee9e65c37a50bec12194f93d36161616","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/ALGOLIA-SEARCH.md","hash":"c7a994b9542040317d8f99affa1405c143a94a38","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/LEANCLOUD-COUNTER-SECURITY.md","hash":"94dc3404ccb0e5f663af2aa883c1af1d6eae553d","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/LICENSE.txt","hash":"368bf2c29d70f27d8726dd914f1b3211cae4bbab","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/MATH.md","hash":"d645b025ec7fb9fbf799b9bb76af33b9f5b9ed93","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/UPDATE-FROM-5.1.X.md","hash":"8b6e4b2c9cfcb969833092bdeaed78534082e3e6","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/de.yml","hash":"74c59f2744217003b717b59d96e275b54635abf5","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/ar.yml","hash":"9815e84e53d750c8bcbd9193c2d44d8d910e3444","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/es.yml","hash":"c64cf05f356096f1464b4b1439da3c6c9b941062","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/default.yml","hash":"45bc5118828bdc72dcaa25282cd367c8622758cb","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/en.yml","hash":"45bc5118828bdc72dcaa25282cd367c8622758cb","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/fa.yml","hash":"3676b32fda37e122f3c1a655085a1868fb6ad66b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/hu.yml","hash":"b1ebb77a5fd101195b79f94de293bcf9001d996f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/id.yml","hash":"572ed855d47aafe26f58c73b1394530754881ec2","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/it.yml","hash":"44759f779ce9c260b895532de1d209ad4bd144bf","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/fr.yml","hash":"752bf309f46a2cd43890b82300b342d7218d625f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/ja.yml","hash":"0cf0baa663d530f22ff380a051881216d6adcdd8","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/ko.yml","hash":"0feea9e43cd399f3610b94d755a39fff1d371e97","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/nl.yml","hash":"5af3473d9f22897204afabc08bb984b247493330","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/pt-BR.yml","hash":"67555b1ba31a0242b12fc6ce3add28531160e35b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/pt.yml","hash":"718d131f42f214842337776e1eaddd1e9a584054","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/ru.yml","hash":"e993d5ca072f7f6887e30fc0c19b4da791ca7a88","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/tr.yml","hash":"2b041eeb8bd096f549464f191cfc1ea0181daca4","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/zh-HK.yml","hash":"3789f94010f948e9f23e21235ef422a191753c65","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/zh-CN.yml","hash":"a1f15571ee7e1e84e3cc0985c3ec4ba1a113f6f8","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/uk.yml","hash":"3a6d635b1035423b22fc86d9455dba9003724de9","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/zh-TW.yml","hash":"8c09da7c4ec3fca2c6ee897b2eea260596a2baa1","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/languages/vi.yml","hash":"93393b01df148dcbf0863f6eee8e404e2d94ef9e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/archive.swig","hash":"e4e31317a8df68f23156cfc49e9b1aa9a12ad2ed","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_layout.swig","hash":"6a6e92a4664cdb981890a27ac11fd057f44de1d5","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/category.swig","hash":"1bde61cf4d2d171647311a0ac2c5c7933f6a53b0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/index.swig","hash":"7f403a18a68e6d662ae3e154b2c1d3bbe0801a23","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/renderer.js","hash":"49a65df2028a1bc24814dc72fa50d52231ca4f05","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/page.swig","hash":"db581bdeac5c75fabb0f17d7c5e746e47f2a9168","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/post.swig","hash":"2f6d992ced7e067521fdce05ffe4fd75481f41c5","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/tag.swig","hash":"0dfb653bd5de980426d55a0606d1ab122bd8c017","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/ISSUE_TEMPLATE/bug-report.md","hash":"c3e6b8196c983c40fd140bdeca012d03e6e86967","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/ISSUE_TEMPLATE/question.md","hash":"53df7d537e26aaf062d70d86835c5fd8f81412f3","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/ISSUE_TEMPLATE/feature-request.md","hash":"12d99fb8b62bd9e34d9672f306c9ae4ace7e053e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/.github/ISSUE_TEMPLATE/other.md","hash":"d3efc0df0275c98440e69476f733097916a2d579","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/ru/DATA-FILES.md","hash":"0bd2d696f62a997a11a7d84fec0130122234174e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/ru/INSTALLATION.md","hash":"9c4fe2873123bf9ceacab5c50d17d8a0f1baef27","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/zh-CN/CODE_OF_CONDUCT.md","hash":"fb23b85db6f7d8279d73ae1f41631f92f64fc864","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/ru/UPDATE-FROM-5.1.X.md","hash":"5237a368ab99123749d724b6c379415f2c142a96","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/zh-CN/ALGOLIA-SEARCH.md","hash":"34b88784ec120dfdc20fa82aadeb5f64ef614d14","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/ru/README.md","hash":"85dd68ed1250897a8e4a444a53a68c1d49eb7e11","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/zh-CN/INSTALLATION.md","hash":"579c7bd8341873fb8be4732476d412814f1a3df7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/zh-CN/MATH.md","hash":"b92585d251f1f9ebe401abb5d932cb920f9b8b10","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/zh-CN/DATA-FILES.md","hash":"ca1030efdfca5e20f9db2e7a428998e66a24c0d0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/zh-CN/CONTRIBUTING.md","hash":"d3f03be036b75dc71cf3c366cd75aee7c127c874","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/zh-CN/UPDATE-FROM-5.1.X.md","hash":"d9ce7331c1236bbe0a551d56cef2405e47e65325","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/zh-CN/README.md","hash":"c038629ff8f3f24e8593c4c8ecf0bef3a35c750d","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/docs/zh-CN/LEANCLOUD-COUNTER-SECURITY.md","hash":"8b18f84503a361fc712b0fe4d4568e2f086ca97d","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_macro/post.swig","hash":"090b5a9b6fca8e968178004cbd6cff205b7eba57","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_macro/post-collapse.swig","hash":"9c8dc0b8170679cdc1ee9ee8dbcbaebf3f42897b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/comments.swig","hash":"db6ab5421b5f4b7cb32ac73ad0e053fdf065f83e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_macro/sidebar.swig","hash":"71655ca21907e9061b6e8ac52d0d8fbf54d0062b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/languages.swig","hash":"ba9e272f1065b8f0e8848648caa7dea3f02c6be1","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/footer.swig","hash":"4369b313cbbeae742cb35f86d23d99d4285f7359","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/pagination.swig","hash":"9876dbfc15713c7a47d4bcaa301f4757bd978269","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/index.swig","hash":"cea942b450bcb0f352da78d76dc6d6f1d23d5029","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/pjax.swig","hash":"4d2c93c66e069852bb0e3ea2e268d213d07bfa3f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/widgets.swig","hash":"83a40ce83dfd5cada417444fb2d6f5470aae6bb0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/three.swig","hash":"a4f42f2301866bd25a784a2281069d8b66836d0b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/noscript.swig","hash":"d1f2bfde6f1da51a2b35a7ab9e7e8eb6eefd1c6b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/vendors.swig","hash":"ef38c213679e7b6d2a4116f56c9e55d678446069","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/quicklink.swig","hash":"311e5eceec9e949f1ea8d623b083cec0b8700ff2","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/events/index.js","hash":"5743cde07f3d2aa11532a168a652e52ec28514fd","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/index.swig","hash":"70c3c01dd181de81270c57f3d99b6d8f4c723404","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/baidu-push.swig","hash":"b782eb2e34c0c15440837040b5d65b093ab6ec04","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/helpers/next-config.js","hash":"5e11f30ddb5093a88a687446617a46b048fa02e5","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/rating.swig","hash":"2731e262a6b88eaee2a3ca61e6a3583a7f594702","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/helpers/font.js","hash":"40cf00e9f2b7aa6e5f33d412e03ed10304b15fd7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/button.js","hash":"8c6b45f36e324820c919a822674703769e6da32c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/helpers/engine.js","hash":"bdb424c3cc0d145bd0c6015bb1d2443c8a9c6cda","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/helpers/next-url.js","hash":"958e86b2bd24e4fdfcbf9ce73e998efe3491a71f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/caniuse.js","hash":"94e0bbc7999b359baa42fa3731bdcf89c79ae2b3","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/label.js","hash":"fc5b267d903facb7a35001792db28b801cccb1f8","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/group-pictures.js","hash":"d902fd313e8d35c3cc36f237607c2a0536c9edf1","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/center-quote.js","hash":"f1826ade2d135e2f60e2d95cb035383685b3370c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/note.js","hash":"0a02bb4c15aec41f6d5f1271cdb5c65889e265d9","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/mermaid.js","hash":"983c6c4adea86160ecc0ba2204bc312aa338121d","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/video.js","hash":"e5ff4c44faee604dd3ea9db6b222828c4750c227","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/pdf.js","hash":"8c613b39e7bff735473e35244b5629d02ee20618","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/tags/tabs.js","hash":"93d8a734a3035c1d3f04933167b500517557ba3e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/default-injects.js","hash":"aec50ed57b9d5d3faf2db3c88374f107203617e0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/front-matter.js","hash":"703bdd142a671b4b67d3d9dfb4a19d1dd7e7e8f7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/post.js","hash":"44ba9b1c0bdda57590b53141306bb90adf0678db","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/locals.js","hash":"b193a936ee63451f09f8886343dcfdca577c0141","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/minify.js","hash":"19985723b9f677ff775f3b17dcebf314819a76ac","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_colors.styl","hash":"a8442520f719d3d7a19811cb3b85bcfd4a596e1f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/avatar.gif","hash":"18c53e15eb0c84b139995f9334ed8522b40aeaf6","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_mixins.styl","hash":"e31a557f8879c2f4d8d5567ee1800b3e03f91f6e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/apple-touch-icon-next.png","hash":"2959dbc97f31c80283e67104fe0854e2369e40aa","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/main.styl","hash":"a3a3bbb5a973052f0186b3523911cb2539ff7b88","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/algolia_logo.svg","hash":"ec119560b382b2624e00144ae01c137186e91621","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-nc-sa.svg","hash":"3031be41e8753c70508aa88e84ed8f4f653f157e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-sa.svg","hash":"aa4742d733c8af8d38d4c183b8adbdcab045872e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-nc-nd.svg","hash":"c6524ece3f8039a5f612feaf865d21ec8a794564","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-nc.svg","hash":"8d39b39d88f8501c0d27f8df9aae47136ebc59b7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/cc-by-nd.svg","hash":"c563508ce9ced1e66948024ba1153400ac0e0621","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/cc-by.svg","hash":"28a0a4fe355a974a5e42f68031652b76798d4f7e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/cc-zero.svg","hash":"87669bf8ac268a91d027a0a4802c92a1473e9030","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/favicon-32x32-next.png","hash":"0749d7b24b0d2fae1c8eb7f671ad4646ee1894b1","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/js/algolia-search.js","hash":"498d233eb5c7af6940baf94c1a1c36fdf1dd2636","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/favicon-16x16-next.png","hash":"943a0d67a9cdf8c198109b28f9dbd42f761d11c3","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/images/logo.svg","hash":"d29cacbae1bdc4bbccb542107ee0524fe55ad6de","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/js/bookmark.js","hash":"9734ebcb9b83489686f5c2da67dc9e6157e988ad","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/js/local-search.js","hash":"35ccf100d8f9c0fd6bfbb7fa88c2a76c42a69110","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/js/utils.js","hash":"730cca7f164eaf258661a61ff3f769851ff1e5da","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/lib/anime.min.js","hash":"47cb482a8a488620a793d50ba8f6752324b46af3","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/js/motion.js","hash":"72df86f6dfa29cce22abeff9d814c9dddfcf13a9","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/js/next-boot.js","hash":"a1b0636423009d4a4e4cea97bcbf1842bfab582c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/head/head-unique.swig","hash":"000bad572d76ee95d9c0a78f9ccdc8d97cc7d4b4","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/head/head.swig","hash":"810d544019e4a8651b756dd23e5592ee851eda71","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/header/menu-item.swig","hash":"9440d8a3a181698b80e1fa47f5104f4565d8cdf3","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/header/menu.swig","hash":"d31f896680a6c2f2c3f5128b4d4dd46c87ce2130","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/header/brand.swig","hash":"c70f8e71e026e878a4e9d5ab3bbbf9b0b23c240c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/header/index.swig","hash":"7dbe93b8297b746afb89700b4d29289556e85267","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/header/sub-menu.swig","hash":"ae2261bea836581918a1c2b0d1028a78718434e0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/page/page-header.swig","hash":"9b7a66791d7822c52117fe167612265356512477","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/post/post-followme.swig","hash":"ceba16b9bd3a0c5c8811af7e7e49d0f9dcb2f41e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/page/breadcrumb.swig","hash":"c851717497ca64789f2176c9ecd1dedab237b752","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/post/post-reward.swig","hash":"2b1a73556595c37951e39574df5a3f20b2edeaef","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/post/post-copyright.swig","hash":"954ad71536b6eb08bd1f30ac6e2f5493b69d1c04","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/post/post-footer.swig","hash":"8f14f3f8a1b2998d5114cc56b680fb5c419a6b07","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/search/index.swig","hash":"2be50f9bfb1c56b85b3b6910a7df27f51143632c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/post/post-related.swig","hash":"f79c44692451db26efce704813f7a8872b7e63a0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/search/algolia-search.swig","hash":"48430bd03b8f19c9b8cdb2642005ed67d56c6e0b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/search/localsearch.swig","hash":"f48a6a8eba04eb962470ce76dd731e13074d4c45","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_partials/sidebar/site-overview.swig","hash":"c46849e0af8f8fb78baccd40d2af14df04a074af","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/schemes/muse.swig","hash":"7f14ef43d9e82bc1efc204c5adf0b1dbfc919a9f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/schemes/mist.swig","hash":"7f14ef43d9e82bc1efc204c5adf0b1dbfc919a9f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/pages/schedule.swig","hash":"077b5d66f6309f2e7dcf08645058ff2e03143e6c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/schemes/gemini.swig","hash":"1c910fc066c06d5fbbe9f2b0c47447539e029af7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_scripts/schemes/pisces.swig","hash":"1c910fc066c06d5fbbe9f2b0c47447539e029af7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/analytics/baidu-analytics.swig","hash":"4790058691b7d36cf6d2d6b4e93795a7b8d608ad","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/analytics/index.swig","hash":"1472cabb0181f60a6a0b7fec8899a4d03dfb2040","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/analytics/google-analytics.swig","hash":"2fa2b51d56bfac6a1ea76d651c93b9c20b01c09b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/comments/disqus.swig","hash":"b14908644225d78c864cd0a9b60c52407de56183","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/analytics/growingio.swig","hash":"5adea065641e8c55994dd2328ddae53215604928","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/comments/changyan.swig","hash":"f39a5bf3ce9ee9adad282501235e0c588e4356ec","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/comments/disqusjs.swig","hash":"82f5b6822aa5ec958aa987b101ef860494c6cf1f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/comments/valine.swig","hash":"be0a8eccf1f6dc21154af297fc79555343031277","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/chat/chatra.swig","hash":"f910618292c63871ca2e6c6e66c491f344fa7b1f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/comments/gitalk.swig","hash":"d6ceb70648555338a80ae5724b778c8c58d7060d","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/comments/livere.swig","hash":"f7a9eca599a682479e8ca863db59be7c9c7508c8","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/chat/tidio.swig","hash":"cba0e6e0fad08568a9e74ba9a5bee5341cfc04c1","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/math/katex.swig","hash":"4791c977a730f29c846efcf6c9c15131b9400ead","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/search/algolia-search.swig","hash":"d35a999d67f4c302f76fdf13744ceef3c6506481","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/math/index.swig","hash":"6c5976621efd5db5f7c4c6b4f11bc79d6554885f","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/math/mathjax.swig","hash":"ecf751321e799f0fb3bf94d049e535130e2547aa","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/search/swiftype.swig","hash":"ba0dbc06b9d244073a1c681ff7a722dcbf920b51","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/search/localsearch.swig","hash":"767b6c714c22588bcd26ba70b0fc19b6810cbacd","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/statistics/firestore.swig","hash":"b26ac2bfbe91dd88267f8b96aee6bb222b265b7a","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/statistics/busuanzi-counter.swig","hash":"4b1986e43d6abce13450d2b41a736dd6a5620a10","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/statistics/cnzz-analytics.swig","hash":"a17ace37876822327a2f9306a472974442c9005d","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/events/lib/config.js","hash":"d34c6040b13649714939f59be5175e137de65ede","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/statistics/lean-analytics.swig","hash":"d56d5af427cdfecc33a0f62ee62c056b4e33d095","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/statistics/index.swig","hash":"5f6a966c509680dbfa70433f9d658cee59c304d7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/tags/mermaid.swig","hash":"f3c43664a071ff3c0b28bd7e59b5523446829576","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/events/lib/injects-point.js","hash":"6661c1c91c7cbdefc6a5e6a034b443b8811235a1","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/events/lib/injects.js","hash":"f233d8d0103ae7f9b861344aa65c1a3c1de8a845","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/layout/_third-party/tags/pdf.swig","hash":"d30b0e255a8092043bac46441243f943ed6fb09b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/comment/default-config.js","hash":"7f2d93af012c1e14b8596fecbfc7febb43d9b7f5","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/comment/disqus.js","hash":"4c0c99c7e0f00849003dfce02a131104fb671137","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/comment/common.js","hash":"2486f3e0150c753e5f3af1a3665d074704b8ee2c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/comment/changyan.js","hash":"a54708fd9309b4357c423a3730eb67f395344a5e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/comment/disqusjs.js","hash":"7f8b92913d21070b489457fa5ed996d2a55f2c32","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/comment/gitalk.js","hash":"e51dc3072c1ba0ea3008f09ecae8b46242ec6021","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/comment/valine.js","hash":"6cbd85f9433c06bae22225ccf75ac55e04f2d106","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/scripts/filters/comment/livere.js","hash":"d5fefc31fba4ab0188305b1af1feb61da49fdeb0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_variables/Mist.styl","hash":"f70be8e229da7e1715c11dd0e975a2e71e453ac8","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_variables/Gemini.styl","hash":"f4e694e5db81e57442c7e34505a416d818b3044a","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_variables/base.styl","hash":"818508748b7a62e02035e87fe58e75b603ed56dc","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/js/schemes/muse.js","hash":"1eb9b88103ddcf8827b1a7cbc56471a9c5592d53","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_variables/Pisces.styl","hash":"612ec843372dae709acb17112c1145a53450cc59","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_variables/Muse.styl","hash":"62df49459d552bbf73841753da8011a1f5e875c8","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/js/schemes/pisces.js","hash":"0ac5ce155bc58c972fe21c4c447f85e6f8755c62","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/back-to-top.styl","hash":"a47725574e1bee3bc3b63b0ff2039cc982b17eff","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/back-to-top-sidebar.styl","hash":"ca5e70662dcfb261c25191cc5db5084dcf661c76","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/components.styl","hash":"8e7b57a72e757cf95278239641726bb2d5b869d1","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/lib/velocity/velocity.min.js","hash":"2f1afadc12e4cf59ef3b405308d21baa97e739c6","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/lib/velocity/velocity.ui.min.js","hash":"ed5e534cd680a25d8d14429af824f38a2c7d9908","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/mobile.styl","hash":"681d33e3bc85bdca407d93b134c089264837378c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/reading-progress.styl","hash":"2e3bf7baf383c9073ec5e67f157d3cb3823c0957","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/comments.styl","hash":"b1f0fab7344a20ed6748b04065b141ad423cf4d9","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/outline.styl","hash":"a1690e035b505d28bdef2b4424c13fc6312ab049","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/base.styl","hash":"0b2c4b78eead410020d7c4ded59c75592a648df8","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/scaffolding.styl","hash":"523fb7b653b87ae37fc91fc8813e4ffad87b0d7e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/buttons.styl","hash":"a2e9e00962e43e98ec2614d6d248ef1773bb9b78","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/tables.styl","hash":"18ce72d90459c9aa66910ac64eae115f2dde3767","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/pagination.styl","hash":"8f58570a1bbc34c4989a47a1b7d42a8030f38b06","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/toggles.styl","hash":"179e33b8ac7f4d8a8e76736a7e4f965fe9ab8b42","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/normalize.styl","hash":"b56367ea676ea8e8783ea89cd4ab150c7da7a060","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Mist/_menu.styl","hash":"7104b9cef90ca3b140d7a7afcf15540a250218fc","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Mist/_layout.styl","hash":"bb7ace23345364eb14983e860a7172e1683a4c94","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Mist/_header.styl","hash":"f6516d0f7d89dc7b6c6e143a5af54b926f585d82","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Gemini/index.styl","hash":"7785bd756e0c4acede3a47fec1ed7b55988385a5","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Mist/_posts-expand.styl","hash":"6136da4bbb7e70cec99f5c7ae8c7e74f5e7c261a","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Mist/index.styl","hash":"a717969829fa6ef88225095737df3f8ee86c286b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Muse/_layout.styl","hash":"4d1c17345d2d39ef7698f7acf82dfc0f59308c34","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Muse/_header.styl","hash":"f0131db6275ceaecae7e1a6a3798b8f89f6c850d","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Muse/_menu.styl","hash":"93db5dafe9294542a6b5f647643cb9deaced8e06","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Muse/_sidebar.styl","hash":"2b2e7b5cea7783c9c8bb92655e26a67c266886f0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Muse/_sub-menu.styl","hash":"c48ccd8d6651fe1a01faff8f01179456d39ba9b1","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Pisces/_menu.styl","hash":"85da2f3006f4bef9a2199416ecfab4d288f848c4","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Pisces/_layout.styl","hash":"70a4324b70501132855b5e59029acfc5d3da1ebd","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Pisces/_header.styl","hash":"e282df938bd029f391c466168d0e68389978f120","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Muse/index.styl","hash":"6ad168288b213cec357e9b5a97674ff2ef3a910c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Pisces/_sidebar.styl","hash":"44f47c88c06d89d06f220f102649057118715828","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Pisces/_sub-menu.styl","hash":"e740deadcfc4f29c5cb01e40f9df6277262ba4e3","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_schemes/Pisces/index.styl","hash":"6ad168288b213cec357e9b5a97674ff2ef3a910c","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/lib/font-awesome/css/all.min.css","hash":"0038dc97c79451578b7bd48af60ba62282b4082b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/pages/breadcrumb.styl","hash":"fafc96c86926b22afba8bb9418c05e6afbc05a57","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/pages/categories.styl","hash":"2bd0eb1512415325653b26d62a4463e6de83c5ac","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/pages/pages.styl","hash":"7504dbc5c70262b048143b2c37d2b5aa2809afa2","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/lib/font-awesome/webfonts/fa-regular-400.woff2","hash":"260bb01acd44d88dcb7f501a238ab968f86bef9e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/pages/tag-cloud.styl","hash":"d21d4ac1982c13d02f125a67c065412085a92ff2","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/pages/schedule.styl","hash":"e771dcb0b4673e063c0f3e2d73e7336ac05bcd57","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-collapse.styl","hash":"e75693f33dbc92afc55489438267869ae2f3db54","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-copyright.styl","hash":"f49ca072b5a800f735e8f01fc3518f885951dd8e","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-eof.styl","hash":"902569a9dea90548bec21a823dd3efd94ff7c133","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-followme.styl","hash":"1e4190c10c9e0c9ce92653b0dbcec21754b0b69d","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-expand.styl","hash":"ded41fd9d20a5e8db66aaff7cc50f105f5ef2952","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-nav.styl","hash":"6a97bcfa635d637dc59005be3b931109e0d1ead5","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-header.styl","hash":"65cb6edb69e94e70e3291e9132408361148d41d5","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-reward.styl","hash":"d114b2a531129e739a27ba6271cfe6857aa9a865","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-gallery.styl","hash":"72d495a88f7d6515af425c12cbc67308a57d88ea","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-rtl.styl","hash":"f5c2788a78790aca1a2f37f7149d6058afb539e0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-tags.styl","hash":"99e12c9ce3d14d4837e3d3f12fc867ba9c565317","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post.styl","hash":"a760ee83ba6216871a9f14c5e56dc9bd0d9e2103","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/post/post-widgets.styl","hash":"5b5649b9749e3fd8b63aef22ceeece0a6e1df605","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/third-party/gitalk.styl","hash":"8a7fc03a568b95be8d3337195e38bc7ec5ba2b23","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/third-party/math.styl","hash":"b49e9fbd3c182b8fc066b8c2caf248e3eb748619","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/third-party/related-posts.styl","hash":"e2992846b39bf3857b5104675af02ba73e72eed5","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/third-party/search.styl","hash":"9f0b93d109c9aec79450c8a0cf4a4eab717d674d","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/header/bookmark.styl","hash":"e2d606f1ac343e9be4f15dbbaf3464bc4df8bf81","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/footer/footer.styl","hash":"454a4aebfabb4469b92a8cbb49f46c49ac9bf165","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/components/third-party/third-party.styl","hash":"9a878d0119785a2316f42aebcceaa05a120b9a7a","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/header/github-banner.styl","hash":"e7a9fdb6478b8674b1cdf94de4f8052843fb71d9","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/header/header.styl","hash":"a793cfff86ad4af818faef04c18013077873f8f0","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/header/headerband.styl","hash":"0caf32492692ba8e854da43697a2ec8a41612194","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/header/site-meta.styl","hash":"45a239edca44acecf971d99b04f30a1aafbf6906","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/header/site-nav.styl","hash":"b2fc519828fe89a1f8f03ff7b809ad68cd46f3d7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/sidebar-author-links.styl","hash":"2cb1876e9e0c9ac32160888af27b1178dbcb0616","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/header/menu.styl","hash":"5f432a6ed9ca80a413c68b00e93d4a411abf280a","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/sidebar-author.styl","hash":"fa0222197b5eee47e18ac864cdc6eac75678b8fe","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/sidebar-blogroll.styl","hash":"44487d9ab290dc97871fa8dd4487016deb56e123","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/sidebar-button.styl","hash":"1f0e7fbe80956f47087c2458ea880acf7a83078b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/sidebar-dimmer.styl","hash":"9b479c2f9a9bfed77885e5093b8245cc5d768ec7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/sidebar-nav.styl","hash":"a960a2dd587b15d3b3fe1b59525d6fa971c6a6ec","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/sidebar-toc.styl","hash":"a05a4031e799bc864a4536f9ef61fe643cd421af","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/sidebar-toggle.styl","hash":"b3220db827e1adbca7880c2bb23e78fa7cbe95cb","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/sidebar.styl","hash":"a9cd93c36bae5af9223e7804963096274e8a4f03","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/outline/sidebar/site-state.styl","hash":"2a47f8a6bb589c2fb635e6c1e4a2563c7f63c407","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/highlight/diff.styl","hash":"d3f73688bb7423e3ab0de1efdf6db46db5e34f80","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/highlight/highlight.styl","hash":"35c871a809afa8306c8cde13651010e282548bc6","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/highlight/theme.styl","hash":"3b3acc5caa0b95a2598bef4eeacb21bab21bea56","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/highlight/copy-code.styl","hash":"f71a3e86c05ea668b008cf05a81f67d92b6d65e4","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/tags/blockquote-center.styl","hash":"1d2778ca5aeeeafaa690dc2766b01b352ab76a02","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/tags/group-pictures.styl","hash":"709d10f763e357e1472d6471f8be384ec9e2d983","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/tags/note.styl","hash":"e4d9a77ffe98e851c1202676940097ba28253313","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/tags/label.styl","hash":"d7fce4b51b5f4b7c31d93a9edb6c6ce740aa0d6b","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/tags/pdf.styl","hash":"b49c64f8e9a6ca1c45c0ba98febf1974fdd03616","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/tags/tabs.styl","hash":"f23670f1d8e749f3e83766d446790d8fd9620278","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/css/_common/scaffolding/tags/tags.styl","hash":"9e4c0653cfd3cc6908fa0d97581bcf80861fb1e7","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/lib/font-awesome/webfonts/fa-brands-400.woff2","hash":"509988477da79c146cb93fb728405f18e923c2de","modified":1627554806000},{"_id":"themes/hexo-theme-next-master/source/lib/font-awesome/webfonts/fa-solid-900.woff2","hash":"75a88815c47a249eadb5f0edc1675957f860cca7","modified":1627554806000},{"_id":"public/categories/index.html","hash":"a0ee14ae55cb47fc4b910fc84e29d0c2b9cb8d2b","modified":1642840380879},{"_id":"public/tags/index.html","hash":"b4ceca4192a436f21e12d2d44bf8653a1d64ca4e","modified":1642840380879},{"_id":"public/2022/01/22/hello world/index.html","hash":"343857c0ad892c47d582adc64789707a80cf4932","modified":1642840380879},{"_id":"public/archives/index.html","hash":"3a98bc9be4ac10523a7eb658a5ba8f758e4e5ac6","modified":1642840380879},{"_id":"public/archives/2022/index.html","hash":"82a3e2871a9463f3e0df5c97cd18f83d498b390b","modified":1642840380879},{"_id":"public/archives/2022/01/index.html","hash":"48db2ef3967ca5fbcd9e024a426bbc17f14a2cfa","modified":1642840380879},{"_id":"public/categories/学习笔记/index.html","hash":"db3c2ad14a49ecac4389a34fb606a4254e029efc","modified":1642840380879},{"_id":"public/tags/金融/index.html","hash":"942202db0275283722e150de8f8301fe01134eb7","modified":1642840380879},{"_id":"public/tags/数学/index.html","hash":"ab71d58f99ad5083c9fc4916d5c45cc911218fe4","modified":1642840380879},{"_id":"public/2022/01/22/Stochastic Calculus/index.html","hash":"97be5e2836cdbd4f22af5902cdf6f822e7d1227e","modified":1642840380879},{"_id":"public/index.html","hash":"add97e9252375ab6e06c3414386741f4f7b92a31","modified":1642840380879},{"_id":"public/images/apple-touch-icon-next.png","hash":"2959dbc97f31c80283e67104fe0854e2369e40aa","modified":1642840380879},{"_id":"public/images/algolia_logo.svg","hash":"ec119560b382b2624e00144ae01c137186e91621","modified":1642840380879},{"_id":"public/images/cc-by-nc-sa.svg","hash":"3031be41e8753c70508aa88e84ed8f4f653f157e","modified":1642840380879},{"_id":"public/images/cc-by-nc.svg","hash":"8d39b39d88f8501c0d27f8df9aae47136ebc59b7","modified":1642840380879},{"_id":"public/images/avatar.gif","hash":"18c53e15eb0c84b139995f9334ed8522b40aeaf6","modified":1642840380879},{"_id":"public/images/cc-by-nc-nd.svg","hash":"c6524ece3f8039a5f612feaf865d21ec8a794564","modified":1642840380879},{"_id":"public/images/cc-by-nd.svg","hash":"c563508ce9ced1e66948024ba1153400ac0e0621","modified":1642840380879},{"_id":"public/images/cc-by-sa.svg","hash":"aa4742d733c8af8d38d4c183b8adbdcab045872e","modified":1642840380879},{"_id":"public/images/favicon-32x32-next.png","hash":"0749d7b24b0d2fae1c8eb7f671ad4646ee1894b1","modified":1642840380879},{"_id":"public/images/cc-by.svg","hash":"28a0a4fe355a974a5e42f68031652b76798d4f7e","modified":1642840380879},{"_id":"public/images/cc-zero.svg","hash":"87669bf8ac268a91d027a0a4802c92a1473e9030","modified":1642840380879},{"_id":"public/images/favicon-16x16-next.png","hash":"943a0d67a9cdf8c198109b28f9dbd42f761d11c3","modified":1642840380879},{"_id":"public/images/logo.svg","hash":"d29cacbae1bdc4bbccb542107ee0524fe55ad6de","modified":1642840380879},{"_id":"public/lib/font-awesome/webfonts/fa-regular-400.woff2","hash":"260bb01acd44d88dcb7f501a238ab968f86bef9e","modified":1642840380879},{"_id":"public/js/bookmark.js","hash":"9734ebcb9b83489686f5c2da67dc9e6157e988ad","modified":1642840380879},{"_id":"public/js/algolia-search.js","hash":"498d233eb5c7af6940baf94c1a1c36fdf1dd2636","modified":1642840380879},{"_id":"public/js/local-search.js","hash":"35ccf100d8f9c0fd6bfbb7fa88c2a76c42a69110","modified":1642840380879},{"_id":"public/js/motion.js","hash":"72df86f6dfa29cce22abeff9d814c9dddfcf13a9","modified":1642840380879},{"_id":"public/js/next-boot.js","hash":"a1b0636423009d4a4e4cea97bcbf1842bfab582c","modified":1642840380879},{"_id":"public/js/utils.js","hash":"730cca7f164eaf258661a61ff3f769851ff1e5da","modified":1642840380879},{"_id":"public/js/schemes/muse.js","hash":"1eb9b88103ddcf8827b1a7cbc56471a9c5592d53","modified":1642840380879},{"_id":"public/js/schemes/pisces.js","hash":"0ac5ce155bc58c972fe21c4c447f85e6f8755c62","modified":1642840380879},{"_id":"public/lib/velocity/velocity.ui.min.js","hash":"ed5e534cd680a25d8d14429af824f38a2c7d9908","modified":1642840380879},{"_id":"public/css/main.css","hash":"f5de99571f0547b631b982a61531a06cb960e5d2","modified":1642840380879},{"_id":"public/lib/anime.min.js","hash":"47cb482a8a488620a793d50ba8f6752324b46af3","modified":1642840380879},{"_id":"public/lib/velocity/velocity.min.js","hash":"2f1afadc12e4cf59ef3b405308d21baa97e739c6","modified":1642840380879},{"_id":"public/lib/font-awesome/css/all.min.css","hash":"0038dc97c79451578b7bd48af60ba62282b4082b","modified":1642840380879},{"_id":"public/lib/font-awesome/webfonts/fa-solid-900.woff2","hash":"75a88815c47a249eadb5f0edc1675957f860cca7","modified":1642840380879},{"_id":"public/lib/font-awesome/webfonts/fa-brands-400.woff2","hash":"509988477da79c146cb93fb728405f18e923c2de","modified":1642840380879}],"Category":[{"name":"学习笔记","_id":"ckypkquy300043opkd6wnhh8i"}],"Data":[],"Page":[{"title":"文章分类","date":"2019-01-14T12:53:04.000Z","type":"categories","_content":"","source":"categories/index.md","raw":"---\ntitle: 文章分类\ndate: 2019-01-14 20:53:04\ntype: \"categories\" #这部分是新添加的\n---\n","updated":"2022-01-22T07:42:49.631Z","path":"categories/index.html","comments":1,"layout":"page","_id":"ckypkquxr00003opk5mvz11xm","content":"","site":{"data":{}},"excerpt":"","more":""},{"title":"标签","date":"2019-01-14T12:56:48.000Z","type":"tags","_content":"","source":"tags/index.md","raw":"---\ntitle: 标签\ndate: 2019-01-14 20:56:48\ntype: \"tags\" #新添加的内容\n---\n","updated":"2022-01-22T07:42:36.591Z","path":"tags/index.html","comments":1,"layout":"page","_id":"ckypkquxz00023opk9yps5nh6","content":"","site":{"data":{}},"excerpt":"","more":""}],"Post":[{"title":"hello world!","_content":"\n这是我的第1篇post","source":"_posts/hello world.md","raw":"---\ntitle: hello world!\n---\n\n这是我的第1篇post","slug":"hello world","published":1,"date":"2022-01-22T07:38:13.692Z","updated":"2022-01-22T07:47:04.314Z","comments":1,"layout":"post","photos":[],"link":"","_id":"ckypkquxv00013opk3wtzekoo","content":"<p>这是我的第1篇post</p>\n","site":{"data":{}},"excerpt":"","more":"<p>这是我的第1篇post</p>\n"},{"layout":"posts","title":"Stochastic Calculus for Finance","_content":"\n<head>\n <script src=\"https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML\" type=\"text/javascript\"></script>\n <script type=\"text/x-mathjax-config\">\n MathJax.Hub.Config({\n tex2jax: {\n skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],\n inlineMath: [['$','$']]\n }\n });\n </script>\n</head>\n\n\n# General Probability Theory\n\n## infinite probability spaces\n\n### $\\sigma$-代数\n\n$\\sigma-algebra$, F is a collection of subsets of $\\Omega$\n\n1. empty set belongs to it\n2. whenever a set belongs to it, its complement also belong to F\n3. the union of a sequence of sets in F belongs to F\n\n可以有推论:\n\n1. $\\Omega$ 一定在F中\n2. 集合序列的交集也一定在F中\n\n### 概率测量的定义 probability measure\n\n一个函数,定义域是F中的任意集合,值域是[0,1],满足:\n\n1. $P(\\Omega)=1$\n2. $P(\\cup^\\infty_{n=1} A_n)=\\sum^\\infty_{n=1} P(A_n)$\n \n $triple(\\Omega,F,P)$称为概率空间\n \n\nuniform(Lebesgue)measure on [0,1]:在0,1之间选取一个数,定义:\n\n$P(a,b)=P[a,b]=b-a,0\\le a \\le b\\le 1$\n\n可以用上述方式表述概率的集合的集合构成了sigma代数,从包含的所有闭区间出发,称为Borel sigma代数\n\n$(a,b)=\\cup_{n=1}^\\infty[a+\\frac{1}{n},b-\\frac{1}{n}]$ ,所以sigma代数中包含了所有开区间,分别取补集可以导出包含开区间与闭区间的并,从而导出所有集合 \n\n通过从闭区间出发,添加所有必要元素构成的sigma代数称之为$Borel \\quad\\sigma-algebra$ of subsets of [0,1] and is denoted B[0,1]\n\nevent A occurs almost surely if P(A)=1\n\n## Random variables and distributions\n\ndefinition: a random variable is a real-valued function X defined on $\\Omega$ with the property that for every Borel subset B of **R,** the subset of $\\Omega$ given by:\n\n$$\n\\begin{equation*}\\{x\\in B\\}=\\{\\omega \\in \\Omega ; X(\\omega )\\in B\\}\\end{equation*}\n$$\n\nis in the $\\sigma$-algebra F\n\n本质是把事件映射为实数,同时为了保证可以拟映射,要求函数可测。\n\n构造R的Borel子集?从所有的闭区间出发,闭区间的交——特别地,开区间也包含进来,从而开集包含进来 ,因为每个开集可以写成开区间序列的并。闭集也是Borel集合,因为是开集的补集。\n\n关注X取值包含于某集合而不是具体的值\n\nDefinition: let X be a random variable on a probability space, the distribution measure of X is the probability measure $\\mu _X$that assigns to each Borel subset B of R the mass $\\mu _X(B)=P\\{X\\in B\\}$ \n\nRandom variable 有distribution 但两者不等同,两个不同的Random variable 可以有相同的distribution,一个单独的random variable 可以有两个不同的distribution\n\ncdf:$F(x)=P\\{X\\le x\\}$\n\n$\\mu_X(x,y]=F(y)-F(x)$\n\n## Expectations\n\n$E(X)=\\sum X(\\omega )P(\\omega )$\n\n$\\{\\Omega , F, P\\}$ random variable $X(\\omega )$ P是概率空间中的测度\n\n$A_k=\\{\\omega \\in \\Omega ; y_k\\le X(\\omega ) < y_{k+1}\\}$\n\nlower Lebesgue sum $LS^-_{\\Pi}=\\sum y_k P(A_k)$\n\nthe maximal distance between the $y_k$ partition points approaches zero, we get Lebesgue integral$\\int_{\\Omega}X(\\omega )dP(\\omega)$\n\nLebesgue integral相当于把积分概念拓展到可测空间,而不是单纯的更换了求和方式。横坐标实际上是$\\Omega$的测度。\n\nif the random variables X can take both positive and negative values, we can define the positive and negative parts of X:\n\n$X^+=max\\{X,0\\}$, $X^-=min\\{-X,0\\}$\n\n$\\int XdP=\\int X^+dP-\\int X^- dP$\n\n**Comparison**\n\nIf $X\\le Y$ almost surely, and if the Lebesgue integral are defined, then\n\n$\\int _{\\Omega}X(\\omega)dP(\\omega)\\le \\int _{\\Omega}Y(\\omega)dP(\\omega)$\n\nIf $X=Y$ almost surely, and if the Lebesgue integral are defined, then\n\n$\\int _{\\Omega}X(\\omega)dP(\\omega)=\\int _{\\Omega}Y(\\omega)dP(\\omega)$\n\n**Integrability, Linearity ...**\n\n**Jensen’s inequality**\n\nif $\\phi$ is a convex, real-valued function defined on R and if $E|X|<\\infty$ ,then\n\n$\\phi(EX)\\le E\\phi(X)$\n\n$\\mathcal{B} (\\mathbb{R})$ be the sigma-algebra of Borel subsets of $\\mathbb{R}$, the Lebesgue measure $\\mathcal{L}$ on R assigns to each set $B\\in \\mathcal{B}(\\mathbb{R})$ a number in $[0,\\infty)$ or the value $\\infty$ so that:\n\n1. $\\mathcal{L}[a,b] =b-a$ \n2. if $B_1,B_2,B_3 \\dots$ is a sequence of disjoint sets in $\\mathcal{B}$ ,then we have the countable additivity property: $\\mathcal{L} (\\cup_{n=1}^\\infty B_n)=\\sum_{n=1}^\\infty \\mathcal{L} (B_n)$\n\n黎曼积分有且只有在区间中非连续点的集合的Lebesgue测度为零时有定义,即f在区间上几乎处处连续\n\n若f的Riemann积分在区间上存在,则f是Borel可测的,而且Riemann积分和Lebesgue积分一致。\n\n### convergence of integrals\n\n**definition**\n\n$X_1,X_2,X_3\\dots$ be a sequence of random variables on the same probability space$(\\Omega, \\mathcal{F},\\mathbb{P})$, $X$ be another random variable. $X_1,X_2,X_3\\dots$ converges to $X$ almost surely $lim_{n\\to \\infty}X_n=X$ almost surely. if the set of $\\omega \\in \\Omega$ for the sequence has limit $X(\\omega)$ is a set with probability one. \n\nStrong law of Large Numbers: \n\n实的Borel可测的函数列$f_1,f_2,f_3\\dots$ defined on$\\mathbb{R}$, $f$ 也是实的Borel可测函数,the sequence converges to f almost every-where if 序列极限不为f的点的集合的 Lebesgue measure为零\n\n$lim_{n\\to \\infty}f_n=f \\textit{ almost everywhere}$","source":"_posts/Stochastic Calculus.md","raw":"---\nlayout: posts\ntitle: Stochastic Calculus for Finance\ncategories: 学习笔记\ntags: [金融,数学]\n\n---\n\n<head>\n <script src=\"https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML\" type=\"text/javascript\"></script>\n <script type=\"text/x-mathjax-config\">\n MathJax.Hub.Config({\n tex2jax: {\n skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],\n inlineMath: [['$','$']]\n }\n });\n </script>\n</head>\n\n\n# General Probability Theory\n\n## infinite probability spaces\n\n### $\\sigma$-代数\n\n$\\sigma-algebra$, F is a collection of subsets of $\\Omega$\n\n1. empty set belongs to it\n2. whenever a set belongs to it, its complement also belong to F\n3. the union of a sequence of sets in F belongs to F\n\n可以有推论:\n\n1. $\\Omega$ 一定在F中\n2. 集合序列的交集也一定在F中\n\n### 概率测量的定义 probability measure\n\n一个函数,定义域是F中的任意集合,值域是[0,1],满足:\n\n1. $P(\\Omega)=1$\n2. $P(\\cup^\\infty_{n=1} A_n)=\\sum^\\infty_{n=1} P(A_n)$\n \n $triple(\\Omega,F,P)$称为概率空间\n \n\nuniform(Lebesgue)measure on [0,1]:在0,1之间选取一个数,定义:\n\n$P(a,b)=P[a,b]=b-a,0\\le a \\le b\\le 1$\n\n可以用上述方式表述概率的集合的集合构成了sigma代数,从包含的所有闭区间出发,称为Borel sigma代数\n\n$(a,b)=\\cup_{n=1}^\\infty[a+\\frac{1}{n},b-\\frac{1}{n}]$ ,所以sigma代数中包含了所有开区间,分别取补集可以导出包含开区间与闭区间的并,从而导出所有集合 \n\n通过从闭区间出发,添加所有必要元素构成的sigma代数称之为$Borel \\quad\\sigma-algebra$ of subsets of [0,1] and is denoted B[0,1]\n\nevent A occurs almost surely if P(A)=1\n\n## Random variables and distributions\n\ndefinition: a random variable is a real-valued function X defined on $\\Omega$ with the property that for every Borel subset B of **R,** the subset of $\\Omega$ given by:\n\n$$\n\\begin{equation*}\\{x\\in B\\}=\\{\\omega \\in \\Omega ; X(\\omega )\\in B\\}\\end{equation*}\n$$\n\nis in the $\\sigma$-algebra F\n\n本质是把事件映射为实数,同时为了保证可以拟映射,要求函数可测。\n\n构造R的Borel子集?从所有的闭区间出发,闭区间的交——特别地,开区间也包含进来,从而开集包含进来 ,因为每个开集可以写成开区间序列的并。闭集也是Borel集合,因为是开集的补集。\n\n关注X取值包含于某集合而不是具体的值\n\nDefinition: let X be a random variable on a probability space, the distribution measure of X is the probability measure $\\mu _X$that assigns to each Borel subset B of R the mass $\\mu _X(B)=P\\{X\\in B\\}$ \n\nRandom variable 有distribution 但两者不等同,两个不同的Random variable 可以有相同的distribution,一个单独的random variable 可以有两个不同的distribution\n\ncdf:$F(x)=P\\{X\\le x\\}$\n\n$\\mu_X(x,y]=F(y)-F(x)$\n\n## Expectations\n\n$E(X)=\\sum X(\\omega )P(\\omega )$\n\n$\\{\\Omega , F, P\\}$ random variable $X(\\omega )$ P是概率空间中的测度\n\n$A_k=\\{\\omega \\in \\Omega ; y_k\\le X(\\omega ) < y_{k+1}\\}$\n\nlower Lebesgue sum $LS^-_{\\Pi}=\\sum y_k P(A_k)$\n\nthe maximal distance between the $y_k$ partition points approaches zero, we get Lebesgue integral$\\int_{\\Omega}X(\\omega )dP(\\omega)$\n\nLebesgue integral相当于把积分概念拓展到可测空间,而不是单纯的更换了求和方式。横坐标实际上是$\\Omega$的测度。\n\nif the random variables X can take both positive and negative values, we can define the positive and negative parts of X:\n\n$X^+=max\\{X,0\\}$, $X^-=min\\{-X,0\\}$\n\n$\\int XdP=\\int X^+dP-\\int X^- dP$\n\n**Comparison**\n\nIf $X\\le Y$ almost surely, and if the Lebesgue integral are defined, then\n\n$\\int _{\\Omega}X(\\omega)dP(\\omega)\\le \\int _{\\Omega}Y(\\omega)dP(\\omega)$\n\nIf $X=Y$ almost surely, and if the Lebesgue integral are defined, then\n\n$\\int _{\\Omega}X(\\omega)dP(\\omega)=\\int _{\\Omega}Y(\\omega)dP(\\omega)$\n\n**Integrability, Linearity ...**\n\n**Jensen’s inequality**\n\nif $\\phi$ is a convex, real-valued function defined on R and if $E|X|<\\infty$ ,then\n\n$\\phi(EX)\\le E\\phi(X)$\n\n$\\mathcal{B} (\\mathbb{R})$ be the sigma-algebra of Borel subsets of $\\mathbb{R}$, the Lebesgue measure $\\mathcal{L}$ on R assigns to each set $B\\in \\mathcal{B}(\\mathbb{R})$ a number in $[0,\\infty)$ or the value $\\infty$ so that:\n\n1. $\\mathcal{L}[a,b] =b-a$ \n2. if $B_1,B_2,B_3 \\dots$ is a sequence of disjoint sets in $\\mathcal{B}$ ,then we have the countable additivity property: $\\mathcal{L} (\\cup_{n=1}^\\infty B_n)=\\sum_{n=1}^\\infty \\mathcal{L} (B_n)$\n\n黎曼积分有且只有在区间中非连续点的集合的Lebesgue测度为零时有定义,即f在区间上几乎处处连续\n\n若f的Riemann积分在区间上存在,则f是Borel可测的,而且Riemann积分和Lebesgue积分一致。\n\n### convergence of integrals\n\n**definition**\n\n$X_1,X_2,X_3\\dots$ be a sequence of random variables on the same probability space$(\\Omega, \\mathcal{F},\\mathbb{P})$, $X$ be another random variable. $X_1,X_2,X_3\\dots$ converges to $X$ almost surely $lim_{n\\to \\infty}X_n=X$ almost surely. if the set of $\\omega \\in \\Omega$ for the sequence has limit $X(\\omega)$ is a set with probability one. \n\nStrong law of Large Numbers: \n\n实的Borel可测的函数列$f_1,f_2,f_3\\dots$ defined on$\\mathbb{R}$, $f$ 也是实的Borel可测函数,the sequence converges to f almost every-where if 序列极限不为f的点的集合的 Lebesgue measure为零\n\n$lim_{n\\to \\infty}f_n=f \\textit{ almost everywhere}$","slug":"Stochastic Calculus","published":1,"date":"2022-01-22T07:46:20.584Z","updated":"2022-01-22T08:31:01.009Z","comments":1,"photos":[],"link":"","_id":"ckypkquy000033opk9jpicgn7","content":"<head>\n <script src=\"https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML\" type=\"text/javascript\"></script>\n <script type=\"text/x-mathjax-config\">\n MathJax.Hub.Config({\n tex2jax: {\n skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],\n inlineMath: [['$','$']]\n }\n });\n </script>\n</head>\n\n\n<h1 id=\"General-Probability-Theory\"><a href=\"#General-Probability-Theory\" class=\"headerlink\" title=\"General Probability Theory\"></a>General Probability Theory</h1><h2 id=\"infinite-probability-spaces\"><a href=\"#infinite-probability-spaces\" class=\"headerlink\" title=\"infinite probability spaces\"></a>infinite probability spaces</h2><h3 id=\"sigma-代数\"><a href=\"#sigma-代数\" class=\"headerlink\" title=\"$\\sigma$-代数\"></a>$\\sigma$-代数</h3><p>$\\sigma-algebra$, F is a collection of subsets of $\\Omega$</p>\n<ol>\n<li>empty set belongs to it</li>\n<li>whenever a set belongs to it, its complement also belong to F</li>\n<li>the union of a sequence of sets in F belongs to F</li>\n</ol>\n<p>可以有推论:</p>\n<ol>\n<li>$\\Omega$ 一定在F中</li>\n<li>集合序列的交集也一定在F中</li>\n</ol>\n<h3 id=\"概率测量的定义-probability-measure\"><a href=\"#概率测量的定义-probability-measure\" class=\"headerlink\" title=\"概率测量的定义 probability measure\"></a>概率测量的定义 probability measure</h3><p>一个函数,定义域是F中的任意集合,值域是[0,1],满足:</p>\n<ol>\n<li>$P(\\Omega)=1$</li>\n<li>$P(\\cup^\\infty_{n=1} A_n)=\\sum^\\infty_{n=1} P(A_n)$ $triple(\\Omega,F,P)$称为概率空间</li>\n</ol>\n<p>uniform(Lebesgue)measure on [0,1]:在0,1之间选取一个数,定义:</p>\n<p>$P(a,b)=P[a,b]=b-a,0\\le a \\le b\\le 1$</p>\n<p>可以用上述方式表述概率的集合的集合构成了sigma代数,从包含的所有闭区间出发,称为Borel sigma代数</p>\n<p>$(a,b)=\\cup_{n=1}^\\infty[a+\\frac{1}{n},b-\\frac{1}{n}]$ ,所以sigma代数中包含了所有开区间,分别取补集可以导出包含开区间与闭区间的并,从而导出所有集合 </p>\n<p>通过从闭区间出发,添加所有必要元素构成的sigma代数称之为$Borel \\quad\\sigma-algebra$ of subsets of [0,1] and is denoted B[0,1]</p>\n<p>event A occurs almost surely if P(A)=1</p>\n<h2 id=\"Random-variables-and-distributions\"><a href=\"#Random-variables-and-distributions\" class=\"headerlink\" title=\"Random variables and distributions\"></a>Random variables and distributions</h2><p>definition: a random variable is a real-valued function X defined on $\\Omega$ with the property that for every Borel subset B of <strong>R,</strong> the subset of $\\Omega$ given by:</p>\n<p>$$<br>\\begin{equation*}{x\\in B}={\\omega \\in \\Omega ; X(\\omega )\\in B}\\end{equation*}<br>$$</p>\n<p>is in the $\\sigma$-algebra F</p>\n<p>本质是把事件映射为实数,同时为了保证可以拟映射,要求函数可测。</p>\n<p>构造R的Borel子集?从所有的闭区间出发,闭区间的交——特别地,开区间也包含进来,从而开集包含进来 ,因为每个开集可以写成开区间序列的并。闭集也是Borel集合,因为是开集的补集。</p>\n<p>关注X取值包含于某集合而不是具体的值</p>\n<p>Definition: let X be a random variable on a probability space, the distribution measure of X is the probability measure $\\mu _X$that assigns to each Borel subset B of R the mass $\\mu _X(B)=P{X\\in B}$ </p>\n<p>Random variable 有distribution 但两者不等同,两个不同的Random variable 可以有相同的distribution,一个单独的random variable 可以有两个不同的distribution</p>\n<p>cdf:$F(x)=P{X\\le x}$</p>\n<p>$\\mu_X(x,y]=F(y)-F(x)$</p>\n<h2 id=\"Expectations\"><a href=\"#Expectations\" class=\"headerlink\" title=\"Expectations\"></a>Expectations</h2><p>$E(X)=\\sum X(\\omega )P(\\omega )$</p>\n<p>${\\Omega , F, P}$ random variable $X(\\omega )$ P是概率空间中的测度</p>\n<p>$A_k={\\omega \\in \\Omega ; y_k\\le X(\\omega ) < y_{k+1}}$</p>\n<p>lower Lebesgue sum $LS^-_{\\Pi}=\\sum y_k P(A_k)$</p>\n<p>the maximal distance between the $y_k$ partition points approaches zero, we get Lebesgue integral$\\int_{\\Omega}X(\\omega )dP(\\omega)$</p>\n<p>Lebesgue integral相当于把积分概念拓展到可测空间,而不是单纯的更换了求和方式。横坐标实际上是$\\Omega$的测度。</p>\n<p>if the random variables X can take both positive and negative values, we can define the positive and negative parts of X:</p>\n<p>$X^+=max{X,0}$, $X^-=min{-X,0}$</p>\n<p>$\\int XdP=\\int X^+dP-\\int X^- dP$</p>\n<p><strong>Comparison</strong></p>\n<p>If $X\\le Y$ almost surely, and if the Lebesgue integral are defined, then</p>\n<p>$\\int _{\\Omega}X(\\omega)dP(\\omega)\\le \\int _{\\Omega}Y(\\omega)dP(\\omega)$</p>\n<p>If $X=Y$ almost surely, and if the Lebesgue integral are defined, then</p>\n<p>$\\int _{\\Omega}X(\\omega)dP(\\omega)=\\int _{\\Omega}Y(\\omega)dP(\\omega)$</p>\n<p><strong>Integrability, Linearity …</strong></p>\n<p><strong>Jensen’s inequality</strong></p>\n<p>if $\\phi$ is a convex, real-valued function defined on R and if $E|X|<\\infty$ ,then</p>\n<p>$\\phi(EX)\\le E\\phi(X)$</p>\n<p>$\\mathcal{B} (\\mathbb{R})$ be the sigma-algebra of Borel subsets of $\\mathbb{R}$, the Lebesgue measure $\\mathcal{L}$ on R assigns to each set $B\\in \\mathcal{B}(\\mathbb{R})$ a number in $[0,\\infty)$ or the value $\\infty$ so that:</p>\n<ol>\n<li>$\\mathcal{L}[a,b] =b-a$ </li>\n<li>if $B_1,B_2,B_3 \\dots$ is a sequence of disjoint sets in $\\mathcal{B}$ ,then we have the countable additivity property: $\\mathcal{L} (\\cup_{n=1}^\\infty B_n)=\\sum_{n=1}^\\infty \\mathcal{L} (B_n)$</li>\n</ol>\n<p>黎曼积分有且只有在区间中非连续点的集合的Lebesgue测度为零时有定义,即f在区间上几乎处处连续</p>\n<p>若f的Riemann积分在区间上存在,则f是Borel可测的,而且Riemann积分和Lebesgue积分一致。</p>\n<h3 id=\"convergence-of-integrals\"><a href=\"#convergence-of-integrals\" class=\"headerlink\" title=\"convergence of integrals\"></a>convergence of integrals</h3><p><strong>definition</strong></p>\n<p>$X_1,X_2,X_3\\dots$ be a sequence of random variables on the same probability space$(\\Omega, \\mathcal{F},\\mathbb{P})$, $X$ be another random variable. $X_1,X_2,X_3\\dots$ converges to $X$ almost surely $lim_{n\\to \\infty}X_n=X$ almost surely. if the set of $\\omega \\in \\Omega$ for the sequence has limit $X(\\omega)$ is a set with probability one. </p>\n<p>Strong law of Large Numbers: </p>\n<p>实的Borel可测的函数列$f_1,f_2,f_3\\dots$ defined on$\\mathbb{R}$, $f$ 也是实的Borel可测函数,the sequence converges to f almost every-where if 序列极限不为f的点的集合的 Lebesgue measure为零</p>\n<p>$lim_{n\\to \\infty}f_n=f \\textit{ almost everywhere}$</p>\n","site":{"data":{}},"excerpt":"","more":"<head>\n <script src=\"https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML\" type=\"text/javascript\"></script>\n <script type=\"text/x-mathjax-config\">\n MathJax.Hub.Config({\n tex2jax: {\n skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],\n inlineMath: [['$','$']]\n }\n });\n </script>\n</head>\n\n\n<h1 id=\"General-Probability-Theory\"><a href=\"#General-Probability-Theory\" class=\"headerlink\" title=\"General Probability Theory\"></a>General Probability Theory</h1><h2 id=\"infinite-probability-spaces\"><a href=\"#infinite-probability-spaces\" class=\"headerlink\" title=\"infinite probability spaces\"></a>infinite probability spaces</h2><h3 id=\"sigma-代数\"><a href=\"#sigma-代数\" class=\"headerlink\" title=\"$\\sigma$-代数\"></a>$\\sigma$-代数</h3><p>$\\sigma-algebra$, F is a collection of subsets of $\\Omega$</p>\n<ol>\n<li>empty set belongs to it</li>\n<li>whenever a set belongs to it, its complement also belong to F</li>\n<li>the union of a sequence of sets in F belongs to F</li>\n</ol>\n<p>可以有推论:</p>\n<ol>\n<li>$\\Omega$ 一定在F中</li>\n<li>集合序列的交集也一定在F中</li>\n</ol>\n<h3 id=\"概率测量的定义-probability-measure\"><a href=\"#概率测量的定义-probability-measure\" class=\"headerlink\" title=\"概率测量的定义 probability measure\"></a>概率测量的定义 probability measure</h3><p>一个函数,定义域是F中的任意集合,值域是[0,1],满足:</p>\n<ol>\n<li>$P(\\Omega)=1$</li>\n<li>$P(\\cup^\\infty_{n=1} A_n)=\\sum^\\infty_{n=1} P(A_n)$ $triple(\\Omega,F,P)$称为概率空间</li>\n</ol>\n<p>uniform(Lebesgue)measure on [0,1]:在0,1之间选取一个数,定义:</p>\n<p>$P(a,b)=P[a,b]=b-a,0\\le a \\le b\\le 1$</p>\n<p>可以用上述方式表述概率的集合的集合构成了sigma代数,从包含的所有闭区间出发,称为Borel sigma代数</p>\n<p>$(a,b)=\\cup_{n=1}^\\infty[a+\\frac{1}{n},b-\\frac{1}{n}]$ ,所以sigma代数中包含了所有开区间,分别取补集可以导出包含开区间与闭区间的并,从而导出所有集合 </p>\n<p>通过从闭区间出发,添加所有必要元素构成的sigma代数称之为$Borel \\quad\\sigma-algebra$ of subsets of [0,1] and is denoted B[0,1]</p>\n<p>event A occurs almost surely if P(A)=1</p>\n<h2 id=\"Random-variables-and-distributions\"><a href=\"#Random-variables-and-distributions\" class=\"headerlink\" title=\"Random variables and distributions\"></a>Random variables and distributions</h2><p>definition: a random variable is a real-valued function X defined on $\\Omega$ with the property that for every Borel subset B of <strong>R,</strong> the subset of $\\Omega$ given by:</p>\n<p>$$<br>\\begin{equation*}{x\\in B}={\\omega \\in \\Omega ; X(\\omega )\\in B}\\end{equation*}<br>$$</p>\n<p>is in the $\\sigma$-algebra F</p>\n<p>本质是把事件映射为实数,同时为了保证可以拟映射,要求函数可测。</p>\n<p>构造R的Borel子集?从所有的闭区间出发,闭区间的交——特别地,开区间也包含进来,从而开集包含进来 ,因为每个开集可以写成开区间序列的并。闭集也是Borel集合,因为是开集的补集。</p>\n<p>关注X取值包含于某集合而不是具体的值</p>\n<p>Definition: let X be a random variable on a probability space, the distribution measure of X is the probability measure $\\mu _X$that assigns to each Borel subset B of R the mass $\\mu _X(B)=P{X\\in B}$ </p>\n<p>Random variable 有distribution 但两者不等同,两个不同的Random variable 可以有相同的distribution,一个单独的random variable 可以有两个不同的distribution</p>\n<p>cdf:$F(x)=P{X\\le x}$</p>\n<p>$\\mu_X(x,y]=F(y)-F(x)$</p>\n<h2 id=\"Expectations\"><a href=\"#Expectations\" class=\"headerlink\" title=\"Expectations\"></a>Expectations</h2><p>$E(X)=\\sum X(\\omega )P(\\omega )$</p>\n<p>${\\Omega , F, P}$ random variable $X(\\omega )$ P是概率空间中的测度</p>\n<p>$A_k={\\omega \\in \\Omega ; y_k\\le X(\\omega ) < y_{k+1}}$</p>\n<p>lower Lebesgue sum $LS^-_{\\Pi}=\\sum y_k P(A_k)$</p>\n<p>the maximal distance between the $y_k$ partition points approaches zero, we get Lebesgue integral$\\int_{\\Omega}X(\\omega )dP(\\omega)$</p>\n<p>Lebesgue integral相当于把积分概念拓展到可测空间,而不是单纯的更换了求和方式。横坐标实际上是$\\Omega$的测度。</p>\n<p>if the random variables X can take both positive and negative values, we can define the positive and negative parts of X:</p>\n<p>$X^+=max{X,0}$, $X^-=min{-X,0}$</p>\n<p>$\\int XdP=\\int X^+dP-\\int X^- dP$</p>\n<p><strong>Comparison</strong></p>\n<p>If $X\\le Y$ almost surely, and if the Lebesgue integral are defined, then</p>\n<p>$\\int _{\\Omega}X(\\omega)dP(\\omega)\\le \\int _{\\Omega}Y(\\omega)dP(\\omega)$</p>\n<p>If $X=Y$ almost surely, and if the Lebesgue integral are defined, then</p>\n<p>$\\int _{\\Omega}X(\\omega)dP(\\omega)=\\int _{\\Omega}Y(\\omega)dP(\\omega)$</p>\n<p><strong>Integrability, Linearity …</strong></p>\n<p><strong>Jensen’s inequality</strong></p>\n<p>if $\\phi$ is a convex, real-valued function defined on R and if $E|X|<\\infty$ ,then</p>\n<p>$\\phi(EX)\\le E\\phi(X)$</p>\n<p>$\\mathcal{B} (\\mathbb{R})$ be the sigma-algebra of Borel subsets of $\\mathbb{R}$, the Lebesgue measure $\\mathcal{L}$ on R assigns to each set $B\\in \\mathcal{B}(\\mathbb{R})$ a number in $[0,\\infty)$ or the value $\\infty$ so that:</p>\n<ol>\n<li>$\\mathcal{L}[a,b] =b-a$ </li>\n<li>if $B_1,B_2,B_3 \\dots$ is a sequence of disjoint sets in $\\mathcal{B}$ ,then we have the countable additivity property: $\\mathcal{L} (\\cup_{n=1}^\\infty B_n)=\\sum_{n=1}^\\infty \\mathcal{L} (B_n)$</li>\n</ol>\n<p>黎曼积分有且只有在区间中非连续点的集合的Lebesgue测度为零时有定义,即f在区间上几乎处处连续</p>\n<p>若f的Riemann积分在区间上存在,则f是Borel可测的,而且Riemann积分和Lebesgue积分一致。</p>\n<h3 id=\"convergence-of-integrals\"><a href=\"#convergence-of-integrals\" class=\"headerlink\" title=\"convergence of integrals\"></a>convergence of integrals</h3><p><strong>definition</strong></p>\n<p>$X_1,X_2,X_3\\dots$ be a sequence of random variables on the same probability space$(\\Omega, \\mathcal{F},\\mathbb{P})$, $X$ be another random variable. $X_1,X_2,X_3\\dots$ converges to $X$ almost surely $lim_{n\\to \\infty}X_n=X$ almost surely. if the set of $\\omega \\in \\Omega$ for the sequence has limit $X(\\omega)$ is a set with probability one. </p>\n<p>Strong law of Large Numbers: </p>\n<p>实的Borel可测的函数列$f_1,f_2,f_3\\dots$ defined on$\\mathbb{R}$, $f$ 也是实的Borel可测函数,the sequence converges to f almost every-where if 序列极限不为f的点的集合的 Lebesgue measure为零</p>\n<p>$lim_{n\\to \\infty}f_n=f \\textit{ almost everywhere}$</p>\n"}],"PostAsset":[],"PostCategory":[{"post_id":"ckypkquy000033opk9jpicgn7","category_id":"ckypkquy300043opkd6wnhh8i","_id":"ckypkquy700073opk24lhf6ey"}],"PostTag":[{"post_id":"ckypkquy000033opk9jpicgn7","tag_id":"ckypkquy500053opkaz7jbhv0","_id":"ckypkquy700083opkem7c8ght"},{"post_id":"ckypkquy000033opk9jpicgn7","tag_id":"ckypkquy600063opk91a4docu","_id":"ckypkquy700093opkel3efoqv"}],"Tag":[{"name":"金融","_id":"ckypkquy500053opkaz7jbhv0"},{"name":"数学","_id":"ckypkquy600063opk91a4docu"}]}}