-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsvg.pathmorphing.js
415 lines (335 loc) · 14.2 KB
/
svg.pathmorphing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*!
* svg.pathmorphing.js - Enables pathmorphing / path animation in svg.js
* @version 0.1.3
*
*
* @copyright (c) 2018 Ulrich-Matthias Schäfer
* @license MIT
*/;
;(function() {
"use strict";
SVG.extend(SVG.PathArray, {
morph: function(array) {
var startArr = this.value
, destArr = this.parse(array)
var startOffsetM = 0
, destOffsetM = 0
var startOffsetNextM = false
, destOffsetNextM = false
while(true){
// stop if there is no M anymore
if(startOffsetM === false && destOffsetM === false) break
// find the next M in path array
startOffsetNextM = findNextM(startArr, startOffsetM === false ? false : startOffsetM+1)
destOffsetNextM = findNextM( destArr, destOffsetM === false ? false : destOffsetM+1)
// We have to add one M to the startArray
if(startOffsetM === false){
var bbox = new SVG.PathArray(result.start).bbox()
// when the last block had no bounding box we simply take the first M we got
if(bbox.height == 0 || bbox.width == 0){
startOffsetM = startArr.push(startArr[0]) - 1
}else{
// we take the middle of the bbox instead when we got one
startOffsetM = startArr.push( ['M', bbox.x + bbox.width/2, bbox.y + bbox.height/2 ] ) - 1
}
}
// We have to add one M to the destArray
if( destOffsetM === false){
var bbox = new SVG.PathArray(result.dest).bbox()
if(bbox.height == 0 || bbox.width == 0){
destOffsetM = destArr.push(destArr[0]) - 1
}else{
destOffsetM = destArr.push( ['M', bbox.x + bbox.width/2, bbox.y + bbox.height/2 ] ) - 1
}
}
// handle block from M to next M
var result = handleBlock(startArr, startOffsetM, startOffsetNextM, destArr, destOffsetM, destOffsetNextM)
// update the arrays to their new values
startArr = startArr.slice(0, startOffsetM).concat(result.start, startOffsetNextM === false ? [] : startArr.slice(startOffsetNextM))
destArr = destArr.slice(0, destOffsetM).concat(result.dest , destOffsetNextM === false ? [] : destArr.slice( destOffsetNextM))
// update offsets
startOffsetM = startOffsetNextM === false ? false : startOffsetM + result.start.length
destOffsetM = destOffsetNextM === false ? false : destOffsetM + result.dest.length
}
// copy back arrays
this.value = startArr
this.destination = new SVG.PathArray()
this.destination.value = destArr
return this
}
})
// sorry for the long declaration
// slices out one block (from M to M) and syncronize it so the types and length match
function handleBlock(startArr, startOffsetM, startOffsetNextM, destArr, destOffsetM, destOffsetNextM, undefined){
// slice out the block we need
var startArrTemp = startArr.slice(startOffsetM, startOffsetNextM || undefined)
, destArrTemp = destArr.slice( destOffsetM, destOffsetNextM || undefined)
var i = 0
, posStart = {pos:[0,0], start:[0,0]}
, posDest = {pos:[0,0], start:[0,0]}
do{
// convert shorthand types to long form
startArrTemp[i] = simplyfy.call(posStart, startArrTemp[i])
destArrTemp[i] = simplyfy.call(posDest , destArrTemp[i])
// check if both shape types match
// 2 elliptical arc curve commands ('A'), are considered different if the
// flags (large-arc-flag, sweep-flag) don't match
if(startArrTemp[i][0] != destArrTemp[i][0] || startArrTemp[i][0] == 'M' ||
(startArrTemp[i][0] == 'A' &&
(startArrTemp[i][4] != destArrTemp[i][4] || startArrTemp[i][5] != destArrTemp[i][5])
)
) {
// if not, convert shapes to beziere
Array.prototype.splice.apply(startArrTemp, [i, 1].concat(toBeziere.call(posStart, startArrTemp[i])))
Array.prototype.splice.apply(destArrTemp, [i, 1].concat(toBeziere.call(posDest, destArrTemp[i])))
} else {
// only update positions otherwise
startArrTemp[i] = setPosAndReflection.call(posStart, startArrTemp[i])
destArrTemp[i] = setPosAndReflection.call(posDest , destArrTemp[i])
}
// we are at the end at both arrays. stop here
if(++i == startArrTemp.length && i == destArrTemp.length) break
// destArray is longer. Add one element
if(i == startArrTemp.length){
startArrTemp.push([
'C',
posStart.pos[0],
posStart.pos[1],
posStart.pos[0],
posStart.pos[1],
posStart.pos[0],
posStart.pos[1],
])
}
// startArr is longer. Add one element
if(i == destArrTemp.length){
destArrTemp.push([
'C',
posDest.pos[0],
posDest.pos[1],
posDest.pos[0],
posDest.pos[1],
posDest.pos[0],
posDest.pos[1]
])
}
}while(true)
// return the updated block
return {start:startArrTemp, dest:destArrTemp}
}
// converts shorthand types to long form
function simplyfy(val){
switch(val[0]){
case 'z': // shorthand line to start
case 'Z':
val[0] = 'L'
val[1] = this.start[0]
val[2] = this.start[1]
break
case 'H': // shorthand horizontal line
val[0] = 'L'
val[2] = this.pos[1]
break
case 'V': // shorthand vertical line
val[0] = 'L'
val[2] = val[1]
val[1] = this.pos[0]
break
case 'T': // shorthand quadratic beziere
val[0] = 'Q'
val[3] = val[1]
val[4] = val[2]
val[1] = this.reflection[1]
val[2] = this.reflection[0]
break
case 'S': // shorthand cubic beziere
val[0] = 'C'
val[6] = val[4]
val[5] = val[3]
val[4] = val[2]
val[3] = val[1]
val[2] = this.reflection[1]
val[1] = this.reflection[0]
break
}
return val
}
// updates reflection point and current position
function setPosAndReflection(val){
var len = val.length
this.pos = [ val[len-2], val[len-1] ]
if('SCQT'.indexOf(val[0]) != -1)
this.reflection = [ 2 * this.pos[0] - val[len-4], 2 * this.pos[1] - val[len-3] ]
return val
}
// converts all types to cubic beziere
function toBeziere(val){
var retVal = [val]
switch(val[0]){
case 'M': // special handling for M
this.pos = this.start = [val[1], val[2]]
return retVal
case 'L':
val[5] = val[3] = val[1]
val[6] = val[4] = val[2]
val[1] = this.pos[0]
val[2] = this.pos[1]
break
case 'Q':
val[6] = val[4]
val[5] = val[3]
val[4] = val[4] * 1/3 + val[2] * 2/3
val[3] = val[3] * 1/3 + val[1] * 2/3
val[2] = this.pos[1] * 1/3 + val[2] * 2/3
val[1] = this.pos[0] * 1/3 + val[1] * 2/3
break
case 'A':
retVal = arcToBeziere(this.pos, val)
val = retVal[0]
break
}
val[0] = 'C'
this.pos = [val[5], val[6]]
this.reflection = [2 * val[5] - val[3], 2 * val[6] - val[4]]
return retVal
}
// finds the next position of type M
function findNextM(arr, offset){
if(offset === false) return false
for(var i = offset, len = arr.length;i < len;++i){
if(arr[i][0] == 'M') return i
}
return false
}
// Convert an arc segment into equivalent cubic Bezier curves
// Depending on the arc, up to 4 curves might be used to represent it since a
// curve gives a good approximation for only a quarter of an ellipse
// The curves are returned as an array of SVG curve commands:
// [ ['C', x1, y1, x2, y2, x, y] ... ]
function arcToBeziere(pos, val) {
// Parameters extraction, handle out-of-range parameters as specified in the SVG spec
// See: https://www.w3.org/TR/SVG11/implnote.html#ArcOutOfRangeParameters
var rx = Math.abs(val[1]), ry = Math.abs(val[2]), xAxisRotation = val[3] % 360
, largeArcFlag = val[4], sweepFlag = val[5], x = val[6], y = val[7]
, A = new SVG.Point(pos), B = new SVG.Point(x, y)
, primedCoord, lambda, mat, k, c, cSquare, t, O, OA, OB, tetaStart, tetaEnd
, deltaTeta, nbSectors, f, arcSegPoints, angle, sinAngle, cosAngle, pt, i, il
, retVal = [], x1, y1, x2, y2
// Ensure radii are non-zero
if(rx === 0 || ry === 0 || (A.x === B.x && A.y === B.y)) {
// treat this arc as a straight line segment
return [['C', A.x, A.y, B.x, B.y, B.x, B.y]]
}
// Ensure radii are large enough using the algorithm provided in the SVG spec
// See: https://www.w3.org/TR/SVG11/implnote.html#ArcCorrectionOutOfRangeRadii
primedCoord = new SVG.Point((A.x-B.x)/2, (A.y-B.y)/2).transform(new SVG.Matrix().rotate(xAxisRotation))
lambda = (primedCoord.x * primedCoord.x) / (rx * rx) + (primedCoord.y * primedCoord.y) / (ry * ry)
if(lambda > 1) {
lambda = Math.sqrt(lambda)
rx = lambda*rx
ry = lambda*ry
}
// To simplify calculations, we make the arc part of a unit circle (rayon is 1) instead of an ellipse
mat = new SVG.Matrix().rotate(xAxisRotation).scale(1/rx, 1/ry).rotate(-xAxisRotation)
A = A.transform(mat)
B = B.transform(mat)
// Calculate the horizontal and vertical distance between the initial and final point of the arc
k = [B.x-A.x, B.y-A.y]
// Find the length of the chord formed by A and B
cSquare = k[0]*k[0] + k[1]*k[1]
c = Math.sqrt(cSquare)
// Calculate the ratios of the horizontal and vertical distance on the length of the chord
k[0] /= c
k[1] /= c
// Calculate the distance between the circle center and the chord midpoint
// using this formula: t = sqrt(r^2 - c^2 / 4)
// where t is the distance between the cirle center and the chord midpoint,
// r is the rayon of the circle and c is the chord length
// From: http://www.ajdesigner.com/phpcircle/circle_segment_chord_t.php
// Because of the imprecision of floating point numbers, cSquare might end
// up being slightly above 4 which would result in a negative radicand
// To prevent that, a test is made before computing the square root
t = (cSquare < 4) ? Math.sqrt(1 - cSquare/4) : 0
// For most situations, there are actually two different ellipses that
// satisfy the constraints imposed by the points A and B, the radii rx and ry,
// and the xAxisRotation
// When the flags largeArcFlag and sweepFlag are equal, it means that the
// second ellipse is used as a solution
// See: https://www.w3.org/TR/SVG/paths.html#PathDataEllipticalArcCommands
if(largeArcFlag === sweepFlag) {
t *= -1
}
// Calculate the coordinates of the center of the circle from the midpoint of the chord
// This is done by multiplying the ratios calculated previously by the distance between
// the circle center and the chord midpoint and using these values to go from the midpoint
// to the center of the circle
// The negative of the vertical distance ratio is used to modify the x coordinate while
// the horizontal distance ratio is used to modify the y coordinate
// That is because the center of the circle is perpendicular to the chord and perpendicular
// lines are negative reciprocals
O = new SVG.Point((B.x+A.x)/2 + t*-k[1], (B.y+A.y)/2 + t*k[0])
// Move the center of the circle at the origin
OA = new SVG.Point(A.x-O.x, A.y-O.y)
OB = new SVG.Point(B.x-O.x, B.y-O.y)
// Calculate the start and end angle
tetaStart = Math.acos(OA.x/Math.sqrt(OA.x*OA.x + OA.y*OA.y))
if (OA.y < 0) {
tetaStart *= -1
}
tetaEnd = Math.acos(OB.x/Math.sqrt(OB.x*OB.x + OB.y*OB.y))
if (OB.y < 0) {
tetaEnd *= -1
}
// If sweep-flag is '1', then the arc will be drawn in a "positive-angle" direction,
// make sure that the end angle is above the start angle
if (sweepFlag && tetaStart > tetaEnd) {
tetaEnd += 2*Math.PI
}
// If sweep-flag is '0', then the arc will be drawn in a "negative-angle" direction,
// make sure that the end angle is below the start angle
if (!sweepFlag && tetaStart < tetaEnd) {
tetaEnd -= 2*Math.PI
}
// Find the number of Bezier curves that are required to represent the arc
// A cubic Bezier curve gives a good enough approximation when representing at most a quarter of a circle
nbSectors = Math.ceil(Math.abs(tetaStart-tetaEnd) * 2/Math.PI)
// Calculate the coordinates of the points of all the Bezier curves required to represent the arc
// For an in-depth explanation of this part see: http://pomax.github.io/bezierinfo/#circles_cubic
arcSegPoints = []
angle = tetaStart
deltaTeta = (tetaEnd-tetaStart)/nbSectors
f = 4*Math.tan(deltaTeta/4)/3
for (i = 0; i <= nbSectors; i++) { // The <= is because a Bezier curve have a start and a endpoint
cosAngle = Math.cos(angle)
sinAngle = Math.sin(angle)
pt = new SVG.Point(O.x+cosAngle, O.y+sinAngle)
arcSegPoints[i] = [new SVG.Point(pt.x+f*sinAngle, pt.y-f*cosAngle), pt, new SVG.Point(pt.x-f*sinAngle, pt.y+f*cosAngle)]
angle += deltaTeta
}
// Remove the first control point of the first segment point and remove the second control point of the last segment point
// These two control points are not used in the approximation of the arc, that is why they are removed
arcSegPoints[0][0] = arcSegPoints[0][1].clone()
arcSegPoints[arcSegPoints.length-1][2] = arcSegPoints[arcSegPoints.length-1][1].clone()
// Revert the transformation that was applied to make the arc part of a unit circle instead of an ellipse
mat = new SVG.Matrix().rotate(xAxisRotation).scale(rx, ry).rotate(-xAxisRotation)
for (i = 0, il = arcSegPoints.length; i < il; i++) {
arcSegPoints[i][0] = arcSegPoints[i][0].transform(mat)
arcSegPoints[i][1] = arcSegPoints[i][1].transform(mat)
arcSegPoints[i][2] = arcSegPoints[i][2].transform(mat)
}
// Convert the segments points to SVG curve commands
for (i = 1, il = arcSegPoints.length; i < il; i++) {
pt = arcSegPoints[i-1][2]
x1 = pt.x
y1 = pt.y
pt = arcSegPoints[i][0]
x2 = pt.x
y2 = pt.y
pt = arcSegPoints[i][1]
x = pt.x
y = pt.y
retVal.push(['C', x1, y1, x2, y2, x, y])
}
return retVal
}
}());