@@ -382,6 +382,42 @@ impl RemLimb for BoxedUint {
382
382
}
383
383
}
384
384
385
+ /// Computes `limbs << shift` inplace, where `0 <= shift < Limb::BITS`, returning the carry.
386
+ fn shl_limb_vartime ( limbs : & mut [ Limb ] , shift : u32 ) -> Limb {
387
+ if shift == 0 {
388
+ return Limb :: ZERO ;
389
+ }
390
+
391
+ let lshift = shift;
392
+ let rshift = Limb :: BITS - shift;
393
+ let limbs_num = limbs. len ( ) ;
394
+
395
+ let carry = limbs[ limbs_num - 1 ] >> rshift;
396
+ for i in ( 1 ..limbs_num) . rev ( ) {
397
+ limbs[ i] = ( limbs[ i] << lshift) | ( limbs[ i - 1 ] >> rshift) ;
398
+ }
399
+ limbs[ 0 ] <<= lshift;
400
+
401
+ carry
402
+ }
403
+
404
+ /// Computes `limbs >> shift` inplace, where `0 <= shift < Limb::BITS`.
405
+ fn shr_limb_vartime ( limbs : & mut [ Limb ] , shift : u32 ) {
406
+ if shift == 0 {
407
+ return ;
408
+ }
409
+
410
+ let lshift = Limb :: BITS - shift;
411
+ let rshift = shift;
412
+
413
+ let limbs_num = limbs. len ( ) ;
414
+
415
+ for i in 0 ..limbs_num - 1 {
416
+ limbs[ i] = ( limbs[ i] >> rshift) | ( limbs[ i + 1 ] << lshift) ;
417
+ }
418
+ limbs[ limbs_num - 1 ] >>= rshift;
419
+ }
420
+
385
421
/// Computes `x` / `y`, returning the quotient in `x` and the remainder in `y`.
386
422
///
387
423
/// This function operates in variable-time. It will panic if the divisor is zero
@@ -408,51 +444,44 @@ pub(crate) fn div_rem_vartime_in_place(x: &mut [Limb], y: &mut [Limb]) {
408
444
}
409
445
410
446
let lshift = y[ yc - 1 ] . leading_zeros ( ) ;
411
- let rshift = if lshift == 0 { 0 } else { Limb :: BITS - lshift } ;
412
- let mut x_hi = Limb :: ZERO ;
413
- let mut carry;
414
-
415
- if lshift != 0 {
416
- // Shift divisor such that it has no leading zeros
417
- // This means that div2by1 requires no extra shifts, and ensures that the high word >= b/2
418
- carry = Limb :: ZERO ;
419
- for i in 0 ..yc {
420
- ( y[ i] , carry) = ( Limb ( ( y[ i] . 0 << lshift) | carry. 0 ) , Limb ( y[ i] . 0 >> rshift) ) ;
421
- }
422
447
423
- // Shift the dividend to match
424
- carry = Limb :: ZERO ;
425
- for i in 0 ..xc {
426
- ( x[ i] , carry) = ( Limb ( ( x[ i] . 0 << lshift) | carry. 0 ) , Limb ( x[ i] . 0 >> rshift) ) ;
427
- }
428
- x_hi = carry;
429
- }
448
+ // Shift divisor such that it has no leading zeros
449
+ // This means that div2by1 requires no extra shifts, and ensures that the high word >= b/2
450
+ shl_limb_vartime ( y, lshift) ;
451
+
452
+ // Shift the dividend to match
453
+ let mut x_hi = shl_limb_vartime ( x, lshift) ;
430
454
431
455
let reciprocal = Reciprocal :: new ( y[ yc - 1 ] . to_nz ( ) . expect ( "zero divisor" ) ) ;
432
456
433
457
for xi in ( yc - 1 ..xc) . rev ( ) {
434
458
// Divide high dividend words by the high divisor word to estimate the quotient word
435
- let ( mut quo, _ ) = div3by2 ( x_hi. 0 , x[ xi] . 0 , x[ xi - 1 ] . 0 , & reciprocal, y[ yc - 2 ] . 0 ) ;
459
+ let mut quo = div3by2 ( x_hi. 0 , x[ xi] . 0 , x[ xi - 1 ] . 0 , & reciprocal, y[ yc - 2 ] . 0 ) ;
436
460
437
461
// Subtract q*divisor from the dividend
438
- carry = Limb :: ZERO ;
439
- let mut borrow = Limb :: ZERO ;
440
- let mut tmp;
441
- for i in 0 ..yc {
442
- ( tmp, carry) = Limb :: ZERO . mac ( y[ i] , Limb ( quo) , carry) ;
443
- ( x[ xi + i + 1 - yc] , borrow) = x[ xi + i + 1 - yc] . sbb ( tmp, borrow) ;
444
- }
445
- ( _, borrow) = x_hi. sbb ( carry, borrow) ;
462
+ let borrow = {
463
+ let mut carry = Limb :: ZERO ;
464
+ let mut borrow = Limb :: ZERO ;
465
+ let mut tmp;
466
+ for i in 0 ..yc {
467
+ ( tmp, carry) = Limb :: ZERO . mac ( y[ i] , Limb ( quo) , carry) ;
468
+ ( x[ xi + i + 1 - yc] , borrow) = x[ xi + i + 1 - yc] . sbb ( tmp, borrow) ;
469
+ }
470
+ ( _, borrow) = x_hi. sbb ( carry, borrow) ;
471
+ borrow
472
+ } ;
446
473
447
474
// If the subtraction borrowed, then decrement q and add back the divisor
448
475
// The probability of this being needed is very low, about 2/(Limb::MAX+1)
449
- let ct_borrow = ConstChoice :: from_word_mask ( borrow. 0 ) ;
450
- carry = Limb :: ZERO ;
451
- for i in 0 ..yc {
452
- ( x[ xi + i + 1 - yc] , carry) =
453
- x[ xi + i + 1 - yc] . adc ( Limb :: select ( Limb :: ZERO , y[ i] , ct_borrow) , carry) ;
454
- }
455
- quo = ct_borrow. select_word ( quo, quo. saturating_sub ( 1 ) ) ;
476
+ quo = {
477
+ let ct_borrow = ConstChoice :: from_word_mask ( borrow. 0 ) ;
478
+ let mut carry = Limb :: ZERO ;
479
+ for i in 0 ..yc {
480
+ ( x[ xi + i + 1 - yc] , carry) =
481
+ x[ xi + i + 1 - yc] . adc ( Limb :: select ( Limb :: ZERO , y[ i] , ct_borrow) , carry) ;
482
+ }
483
+ ct_borrow. select_word ( quo, quo. wrapping_sub ( 1 ) )
484
+ } ;
456
485
457
486
// Store the quotient within dividend and set x_hi to the current highest word
458
487
x_hi = x[ xi] ;
@@ -464,12 +493,7 @@ pub(crate) fn div_rem_vartime_in_place(x: &mut [Limb], y: &mut [Limb]) {
464
493
y[ yc - 1 ] = x_hi;
465
494
466
495
// Unshift the remainder from the earlier adjustment
467
- if lshift != 0 {
468
- carry = Limb :: ZERO ;
469
- for i in ( 0 ..yc) . rev ( ) {
470
- ( y[ i] , carry) = ( Limb ( ( y[ i] . 0 >> lshift) | carry. 0 ) , Limb ( y[ i] . 0 << rshift) ) ;
471
- }
472
- }
496
+ shr_limb_vartime ( y, lshift) ;
473
497
474
498
// Shift the quotient to the low limbs within dividend
475
499
// let x_size = xc - yc + 1;
0 commit comments