diff --git a/README.md b/README.md index 3654f1f..d08fd1f 100644 --- a/README.md +++ b/README.md @@ -53,7 +53,7 @@ where the derivatives `dPhi` and `dPsi` are optional. The algorithm will be more When $Y$ is non-negative, and we have two input streams $X_1$ and $X_2$, by setting $$\Phi_i(W_i) = \frac{1}{2}\text{Tr}W_iC_{X_i X_i}W_i^{\top}, i\in \\{1,2\\} \text{ and } \Psi(M) = \frac{1}{2}\text{Tr}MM^{\top},$$ we get the *nonnegative cannonical correlation analysis*. We can simply create a NCCA instance with the following code ``` -cca = CorrGame(n=[n1, n2], k=top_k, +ncca = CorrGame(n=[n1, n2], k=top_k, Phi=lambda W, X: (W.mm(X.mm(X.t())/X.size(1))*W).sum()/2, Psi=lambda M, X: (M*M).sum()/2, dPhi = lambda W, X:W.mm(X.mm(X.t())/X.size(1)), @@ -68,5 +68,5 @@ cca = CorrGame(n=[n1, n2], k=top_k, Please see [`general-correlation-game.ipynb`](https://github.com/RunzheYang/CorrGame/blob/main/general-correlation-game.ipynb) and [`multi-source-correlation-game.ipynb`](https://github.com/RunzheYang/CorrGame/blob/main/multi-source-correlation-game.ipynb) for more examples. -## Reference +## References ...