-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoc_label.py
62 lines (58 loc) · 2.06 KB
/
voc_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# -*- coding: utf-8 -*-
# transform YOLO type to txt:
# each line: [class,x,y,w,h]
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = ["head", "all"] # Change to your own classes
abs_path = os.getcwd()
print(abs_path)
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
# path to annotation file with xml type
in_file = open('/root/autodl-tmp/inf_voc_fuhe/VOC2007/Annotations/%s.xml' % (image_id), encoding='UTF-8')
# path to outputflie with annotations in txt type
out_file = open('/root/autodl-tmp/inf_voc_fuhe/VOC2007/ann_txt/%s.txt' % (image_id), 'w') # Change here
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = 0
if obj.find('Difficult'):
difficult = obj.find('Difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
out_file.close() # Close the file
wd = getcwd()
for image_set in sets:
# Path to train.txt val.txt and test.txt
image_ids = open('/root/autodl-tmp/inf_voc_fuhe/VOC2007/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
for image_id in image_ids:
convert_annotation(image_id)