-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_action_detect.py
667 lines (575 loc) · 24.7 KB
/
demo_action_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy as cp
import os
import os.path as osp
import shutil
import time
import gc
import imageio.v2 as iio
import cv2
import mmcv
import numpy as np
import torch
from mmcv import DictAction
from mmcv.runner import load_checkpoint
from mmaction.models import build_detector
from mmaction.utils import import_module_error_func
from collections import Counter
try:
from mmdet.apis import inference_detector, init_detector
except (ImportError, ModuleNotFoundError):
'''此处最好不要掩藏报错, 应该直接抛出异常'''
raise ImportError('Please install mmdet')
# @import_module_error_func('mmdet')
# def inference_detector(*args, **kwargs):
# pass
# @import_module_error_func('mmdet')
# def init_detector(*args, **kwargs):
# pass
try:
import moviepy.editor as mpy
except ImportError:
raise ImportError('Please install moviepy to enable output file')
FONTFACE = cv2.FONT_HERSHEY_DUPLEX
FONTSCALE = 0.5
FONTCOLOR = (255, 255, 255) # BGR, white
MSGCOLOR = (128, 128, 128) # BGR, gray
THICKNESS = 1
LINETYPE = 1
# 全局变量, 记录各个函数的执行耗时, 用于最后的输出
g_all_func_cost = []
# 统计函数的执行耗时
class TimeCostDecorator():
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwargs):
st = time.time()
ret = self.func(*args, **kwargs)
cost = time.time() - st
print("\n**** timecost of %s: %.3f seconds\n" % (self.func.__name__, cost))
g_all_func_cost.append((self.func.__name__, cost))
return ret
# 打印所有记录起来的执行耗时
def print_all_cost():
"""Print all time cost of function recorded in global var:
g_all_func_cost
"""
print("all cost time info (seconds)")
for c in g_all_func_cost:
print("%25s : %.3f" % (c[0], c[1]))
def hex2color(h):
"""Convert the 6-digit hex string to tuple of 3 int value (RGB)"""
return (int(h[:2], 16), int(h[2:4], 16), int(h[4:], 16))
plate_blue = '03045e-023e8a-0077b6-0096c7-00b4d8-48cae4'
plate_blue = plate_blue.split('-')
plate_blue = [hex2color(h) for h in plate_blue]
plate_green = '004b23-006400-007200-008000-38b000-70e000'
plate_green = plate_green.split('-')
plate_green = [hex2color(h) for h in plate_green]
# 得到检测框中得分最高的类别
def get_best_action(results):
new_results = []
for result in results:
if result is None:
new_results.append(None)
continue
max_index = 0
max_score = 0
max_label = 0
for i in range(len(result)):
# 获取当前元素中的行为标签和对应的得分
boxes, labels, scores = result[i][0], result[i][1], result[i][2]
# 找到得分最高的行为标签
max_score_index = np.argmax(scores)
max_score_label = labels[max_score_index]
if scores[max_score_index] > max_score:
max_score = scores[max_score_index]
max_index = i
max_label = labels[max_score_index]
# 构建新的元素,将行为标签替换为得分最高的标签
new_result = (boxes, [max_label], [max_score])
new_results.append(new_result)
return new_results
# 滑动窗口后处理
def postprocess(new_results, predict_stepsize):
assert 128 % predict_stepsize == 0 # 128根据所需的滑动窗口大小进行修改
# print('n=', 64 / predict_stepsize)
n = int(128 / predict_stepsize) # 128根据所需的滑动窗口大小进行修改
result_with_most_common = []
rest = new_results[0:n]
for i in range(n, len(new_results)):
# 构建滑动窗口
window = new_results[i - n:i]
# 统计行为标签出现次数
all_labels = []
for item in window:
if item == None:
all_labels.append(None)
continue
all_labels.append(item[1][0])
# print(all_labels)
label_counts = Counter(all_labels)
# print('\nlabel_counts:\n',label_counts)
# 获取出现次数最多的行为标签
most_common_label = label_counts.most_common(1)[0][0]
# print('\nmost_common_label:\n',most_common_label)
# 将第n个元素的行为标签替换为出现次数最多的行为标签
if most_common_label == None or window[-1]== None:
result_with_most_common.append(None)
else:
result_with_most_common.append((window[-1][0], [most_common_label], window[-1][2]))
return rest + result_with_most_common
def visualize(frames, annotations, predict_stepsize, plate=plate_blue):
"""Visualize frames with predicted annotations.
Args:
frames (list[np.ndarray]): Frames for visualization, note that
len(frames) % len(annotations) should be 0.
annotations (list[list[tuple]]): The predicted results.
plate (str): The plate used for visualization. Default: plate_blue.
Returns:
list[np.ndarray]: Visualized frames.
"""
annotations = get_best_action(annotations)
annotations = postprocess(annotations, predict_stepsize)
plate = [x[::-1] for x in plate]
frames_ = cp.deepcopy(frames)
nf, na = len(frames), len(annotations)
assert nf % na == 0
nfpa = len(frames) // len(annotations)
anno = None
h, w, _ = frames[0].shape
scale_ratio = np.array([w, h, w, h])
for i in range(na):
anno = annotations[i]
print('anno:', anno)
if anno is None:
continue
for j in range(nfpa):
ind = i * nfpa + j
frame = frames_[ind]
box = anno[0]
label = anno[1]
score = anno[2]
box = (box * scale_ratio).astype(np.int64)
st, ed = tuple(box[:2]), tuple(box[2:])
cv2.rectangle(frame, st, ed, plate[0], 2)
text = str(label)
#text = ': '.join([text, str(score[k])])
location = (0 + st[0], 18 + st[1])
textsize = cv2.getTextSize(text, FONTFACE, FONTSCALE,
THICKNESS)[0]
textwidth = textsize[0]
diag0 = (location[0] + textwidth, location[1] - 14)
diag1 = (location[0], location[1] + 2)
cv2.rectangle(frame, diag0, diag1, plate[1], -1)
cv2.putText(frame, text, location, FONTFACE, FONTSCALE,
FONTCOLOR, THICKNESS, LINETYPE)
return frames_
def parse_args():
parser = argparse.ArgumentParser(description='MMAction2 demo')
parser.add_argument(
'--config',
default=('configs/detection/ava/'
'slowonly_omnisource_pretrained_r101_8x8x1_20e_ava_rgb.py'),
help='spatio temporal detection config file path')
parser.add_argument(
'--checkpoint',
default=('https://download.openmmlab.com/mmaction/detection/ava/'
'slowonly_omnisource_pretrained_r101_8x8x1_20e_ava_rgb/'
'slowonly_omnisource_pretrained_r101_8x8x1_20e_ava_rgb'
'_20201217-16378594.pth'),
help='spatio temporal detection checkpoint file/url')
parser.add_argument(
'--det-config',
default='demo/faster_rcnn_r50_fpn_2x_coco.py',
help='human detection config file path (from mmdet)')
parser.add_argument(
'--det-checkpoint',
default=('http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/'
'faster_rcnn_r50_fpn_2x_coco/'
'faster_rcnn_r50_fpn_2x_coco_'
'bbox_mAP-0.384_20200504_210434-a5d8aa15.pth'),
help='human detection checkpoint file/url')
parser.add_argument(
'--det-score-thr',
type=float,
default=0.9,
help='the threshold of human detection score')
parser.add_argument(
'--action-score-thr',
type=float,
default=0.5,
help='the threshold of human action score')
parser.add_argument('--video', help='video file/url')
parser.add_argument(
'--label-map',
default='tools/data/ava/label_map.txt',
help='label map file')
parser.add_argument(
'--device', type=str, default='cuda:0', help='CPU/CUDA device option')
parser.add_argument(
'--out-filename',
default='demo/stdet_demo.mp4',
help='output filename')
parser.add_argument(
'--out-txtname',
default='demo/stdet_demo_result.txt',
help='output txtname')
parser.add_argument(
'--predict-stepsize',
default=8,
type=int,
help='give out a prediction per n frames')
parser.add_argument(
'--output-stepsize',
default=4,
type=int,
help=('show one frame per n frames in the demo, we should have: '
'predict_stepsize % output_stepsize == 0'))
parser.add_argument(
'--output-fps',
default=6,
type=int,
help='the fps of demo video output')
parser.add_argument(
'--visualize',
default=0,
type=int,
help='show the visualized demo, (1 for yes, 0 for no)')
parser.add_argument(
'--show-progress-bar',
default=1,
type=int,
help='show progress bar(1 for yes, 0 for no)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
args = parser.parse_args()
return args
@TimeCostDecorator
def frame_extraction(video_path, show_progress_bar):
"""Extract frames given video_path.
Args:
video_path (str): The video_path.
"""
# Load the video, extract frames into ./tmp/video_name
target_dir = osp.join('./tmp', osp.basename(osp.splitext(video_path)[0]))
os.makedirs(target_dir, exist_ok=True)
# Should be able to handle videos up to several hours
frame_tmpl = osp.join(target_dir, 'img_{:06d}.jpg')
vid = cv2.VideoCapture(video_path)
frames = []
frame_paths = []
flag, frame = vid.read()
print('flag', flag)
cnt = 0
while flag:
if show_progress_bar == 1:
print("\r frame_extraction: " + str(cnt), end="")
frames.append(frame)
frame_path = frame_tmpl.format(cnt + 1)
frame_paths.append(frame_path)
'''[效率优化] 后续操作都直接使用已经加载到内存的 frames, 以提高运行速度.
cv2.imwrite 或 cv2.imread 都需要磁盘操作, 会很慢, 所以此处干脆不写文件.
'''
# cv2.imwrite(frame_path, frame)
cnt += 1
flag, frame = vid.read()
return frame_paths, frames
@TimeCostDecorator
def detection_inference(args, frame_paths):
"""Detect human boxes given frame paths.
Args:
args (argparse.Namespace): The arguments.
frame_paths (list[str]): The paths of frames to do detection inference,
or loaded images.
Returns:
list[np.ndarray]: The human detection results.
"""
model = init_detector(args.det_config, args.det_checkpoint, args.device)
assert model.CLASSES[0] == 'person', ('We require you to use a detector '
'trained on COCO')
results = []
print('Performing Human Detection for each frame')
if args.show_progress_bar == 1:
prog_bar = mmcv.ProgressBar(len(frame_paths))
for frame_path in frame_paths:
result = inference_detector(model, frame_path)
# We only keep human detections with score larger than det_score_thr
result = result[0][result[0][:, 4] >= args.det_score_thr]
results.append(result)
if args.show_progress_bar == 1:
prog_bar.update()
print("\n") # 输出换行, 避免输出混在一起
return results
def load_label_map(file_path):
"""Load Label Map.
Args:
file_path (str): The file path of label map.
Returns:
dict: The label map (int -> label name).
"""
lines = open(file_path).readlines()
lines = [x.strip().split(': ') for x in lines]
return {int(x[0]): x[1] for x in lines}
def abbrev(name):
"""Get the abbreviation of label name:
'take (an object) from (a person)' -> 'take ... from ...'
"""
while name.find('(') != -1:
st, ed = name.find('('), name.find(')')
name = name[:st] + '...' + name[ed + 1:]
return name
def pack_result(human_detection, result, img_h, img_w):
"""Short summary.
Args:
human_detection (np.ndarray): Human detection result.
result (type): The predicted label of each human proposal.
img_h (int): The image height.
img_w (int): The image width.
Returns:
tuple: Tuple of human proposal, label name and label score.
"""
human_detection[:, 0::2] /= img_w
human_detection[:, 1::2] /= img_h
results = []
if result is None:
return None
for prop, res in zip(human_detection, result):
res.sort(key=lambda x: -x[1])
results.append(
(prop.data.cpu().numpy(), [x[0] for x in res], [x[1]
for x in res]))
return results
@TimeCostDecorator
def write_result_txt(txt_path, results):
with open(txt_path, "w") as file:
for annotation in results:
if annotation is not None:
for annotation_tuple in annotation:
# 将元组中的数据转换为字符串并写入文件
annotation_str = " ".join(map(str, annotation_tuple))
file.write(annotation_str + "\n")
else:
file.write("None\n")
print("\n检测结果已保存到", txt_path)
@TimeCostDecorator
def write_visualize_video(args, timestamps, results, original_frames):
print('Performing visualization')
def dense_timestamps(timestamps, n):
"""Make it nx frames."""
old_frame_interval = (timestamps[1] - timestamps[0])
start = timestamps[0] - old_frame_interval / n * (n - 1) / 2
new_frame_inds = np.arange(
len(timestamps) * n) * old_frame_interval / n + start
return new_frame_inds.astype(np.int_)
assert args.predict_stepsize % args.output_stepsize == 0
dense_n = int(args.predict_stepsize / args.output_stepsize)
'''[效率优化] 使用已经加载到内存的 original_frames, 以提高运行速度.
'''
# frames = [
# cv2.imread(frame_paths[i - 1])
# for i in dense_timestamps(timestamps, dense_n)
# ]
frames = [
original_frames[i - 1]
for i in dense_timestamps(timestamps, dense_n)
]
vis_frames = visualize(frames, results, args.predict_stepsize)
'''方式1: 使用 moviepy 来保存视频文件.
速度慢, 但会调用 ffmpeg 进行视频压缩.
'''
def write_video_by_moviepy(vidname):
print("write_video_by_moviepy begin")
vid = mpy.ImageSequenceClip([x[:, :, ::-1] for x in vis_frames],
fps=args.output_fps)
vidlogger = None
if args.show_progress_bar == 1:
vidlogger = 'bar'
vid.write_videofile(vidname, logger=vidlogger)
print("\n视频已使用 moviepy 保存到:", vidname)
'''方式2: 使用 cv2 来保存视频文件.
速度快, 虽然不像 moviepy 那样会调用 ffmpeg 对视频进行压缩会导致视频体积大一倍左右,
但是用于展示的场景, 我们更关心运行速度, 不太需要考虑体积问题; 另外, 在生成熊猫的个体报告时,
是不需要 visualize 的, 只需要拿到 results 进行统计即可.
'''
def write_video_by_cv2(vidname):
print("write_video_by_cv2 begin")
fps = args.output_fps
h, w, _ = vis_frames[0].shape
size = (w, h)
# 编码为 mp4v 格式
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
vid = cv2.VideoWriter(vidname, fourcc, fps, size, isColor=True)
if args.show_progress_bar == 1:
prog_bar = mmcv.ProgressBar(len(vis_frames))
for x in vis_frames:
vid.write(x)
if args.show_progress_bar == 1:
prog_bar.update()
vid.release()
print("\n视频已使用 cv2 保存到:", vidname)
'''方式3: 使用 imageio 来保存视频文件.
速度比 moviepy 快,且能调用 ffmpeg 生成 h264 编码的视频.
安装 imageio: conda install imageio
'''
def write_video_by_imageio(vidname):
print("write_video_by_imageio begin")
fps = args.output_fps
h, w, _ = vis_frames[0].shape
size = (w, h)
vid = iio.get_writer(vidname, format='ffmpeg', mode='I', fps=fps, codec='libx264', pixelformat='yuv420p')
if args.show_progress_bar == 1:
prog_bar = mmcv.ProgressBar(len(vis_frames))
for x in vis_frames:
vid.append_data(x[:, :, ::-1])
if args.show_progress_bar == 1:
prog_bar.update()
vid.close()
print("\n视频已使用 imageio 保存到:", vidname)
'''[效率优化] 使用 imageio
moviepy write_videofile 比 cv2、imageio 都慢, 不是因为它没有使用 gpu 优化, 而是因为每帧 write_frame 时,
都需要先 img_array.tobytes() 把帧数据转为二进制格式, 再通过 self.proc.stdin.write 把数据传递给 ffmpeg.
实际测试中, tobytes() 可以占据 write_videofile 90% 左右的耗时, 并且 tobytes() 是在单线程中调用的,
无法利用多核进行并行优化.
虽然 cv2 是最快的,但 cv2 存在一个问题, 使用 mp4v 格式生成出来的视频无法在浏览器上播放,如果要使用 h264 来生成视频,
又需要重新编译 opencv-python 库,这样会非常麻烦. 所以,折衷的办法就是使用 imageio 来生成视频。
时间对比:1分钟视频合成耗时(秒)
cv2: 3.639
imageio: 6.115
moviepy: 11.539
'''
write_video_by_imageio(args.out_filename)
@TimeCostDecorator
def main():
args = parse_args()
print(args)
frame_paths, original_frames = frame_extraction(args.video, args.show_progress_bar)
num_frame = len(frame_paths)
h, w, _ = original_frames[0].shape
# resize frames to shortside 256
new_w, new_h = mmcv.rescale_size((w, h), (256, np.Inf))
resize_frames = [mmcv.imresize(img, (new_w, new_h)) for img in original_frames]
w_ratio, h_ratio = new_w / w, new_h / h
# Get clip_len, frame_interval and calculate center index of each clip
config = mmcv.Config.fromfile(args.config)
config.merge_from_dict(args.cfg_options)
val_pipeline = config.data.val.pipeline
sampler = [x for x in val_pipeline if x['type'] == 'SampleAVAFrames'][0]
clip_len, frame_interval = sampler['clip_len'], sampler['frame_interval']
window_size = clip_len * frame_interval
assert clip_len % 2 == 0, 'We would like to have an even clip_len'
# Note that it's 1 based here
timestamps = np.arange(window_size // 2, num_frame + 1 - window_size // 2,
args.predict_stepsize)
# Load label_map
label_map = load_label_map(args.label_map)
try:
if config['data']['train']['custom_classes'] is not None:
label_map = {
id + 1: label_map[cls]
for id, cls in enumerate(config['data']['train']
['custom_classes'])
}
except KeyError:
pass
# Get Human detection results
'''[效率优化] center_frames 使用已经加载到内存的 original_frames, 以提高运行速度.
detection_inference 内部调用的 inference_detector 支持 "image files or loaded images".
'''
# center_frames = [frame_paths[ind - 1] for ind in timestamps]
center_frames = [original_frames[ind - 1] for ind in timestamps]
human_detections = detection_inference(args, center_frames)
for i in range(len(human_detections)):
det = human_detections[i]
det[:, 0:4:2] *= w_ratio
det[:, 1:4:2] *= h_ratio
human_detections[i] = torch.from_numpy(det[:, :4]).to(args.device)
# Get img_norm_cfg
img_norm_cfg = config['img_norm_cfg']
if 'to_rgb' not in img_norm_cfg and 'to_bgr' in img_norm_cfg:
to_bgr = img_norm_cfg.pop('to_bgr')
img_norm_cfg['to_rgb'] = to_bgr
img_norm_cfg['mean'] = np.array(img_norm_cfg['mean'])
img_norm_cfg['std'] = np.array(img_norm_cfg['std'])
# Build STDET model
try:
# In our spatiotemporal detection demo, different actions should have
# the same number of bboxes.
config['model']['test_cfg']['rcnn']['action_thr'] = .0
except KeyError:
pass
config.model.backbone.pretrained = None
model = build_detector(config.model, test_cfg=config.get('test_cfg'))
load_checkpoint(model, args.checkpoint, map_location='cpu')
model.to(args.device)
model.eval()
@TimeCostDecorator
def SpatioTemporal():
print('Performing SpatioTemporal Action Detection for each clip')
predictions = []
assert len(timestamps) == len(human_detections)
if args.show_progress_bar == 1:
prog_bar = mmcv.ProgressBar(len(timestamps))
for timestamp, proposal in zip(timestamps, human_detections):
if proposal.shape[0] == 0:
predictions.append(None)
continue
start_frame = timestamp - (clip_len // 2 - 1) * frame_interval
frame_inds = start_frame + np.arange(0, window_size, frame_interval)
frame_inds = list(frame_inds - 1)
imgs = [resize_frames[ind].astype(np.float32) for ind in frame_inds]
_ = [mmcv.imnormalize_(img, **img_norm_cfg) for img in imgs]
# THWC -> CTHW -> 1CTHW
input_array = np.stack(imgs).transpose((3, 0, 1, 2))[np.newaxis]
input_tensor = torch.from_numpy(input_array).to(args.device)
with torch.no_grad():
result = model(
return_loss=False,
img=[input_tensor],
img_metas=[[dict(img_shape=(new_h, new_w))]],
proposals=[[proposal]])
result = result[0]
prediction = []
# N proposals
for i in range(proposal.shape[0]):
prediction.append([])
# Perform action score thr
for i in range(len(result)):
if i + 1 not in label_map:
continue
for j in range(proposal.shape[0]):
if result[i][j, 4] > args.action_score_thr:
prediction[j].append((label_map[i + 1], result[i][j,
4]))
predictions.append(prediction)
if args.show_progress_bar == 1:
prog_bar.update()
results = []
for human_detection, prediction in zip(human_detections, predictions):
results.append(pack_result(human_detection, prediction, new_h, new_w))
return results
results = SpatioTemporal()
resize_frames = None
gc.collect()
# 保存结果到 txt 文件
write_result_txt(args.out_txtname, results)
# 合成带框图的视频
if (args.visualize == 1):
write_visualize_video(args, timestamps, results, original_frames)
# 删除临时目录
tmp_frame_dir = osp.dirname(frame_paths[0])
if os.path.exists(tmp_frame_dir):
shutil.rmtree(tmp_frame_dir)
'''调用示例:
python detect.py --visualize 1 --show-progress-bar 1 --config ./config/config.py --checkpoint ./checkpoints/best.pth --det-config ./config/det_config.py --det-checkpoint checkpoints/det_checkpoint.pth --video ./videos/2.mp4 --out-filename ./results/detb_2.mp4 --out-txtname ./results/detb_2_result.txt --det-score-thr 0.1 --action-score-thr 0.1 --predict-stepsize 30 --output-stepsize 2 --output-fps 12 --label-map label_map.txt
'''
if __name__ == '__main__':
main()
print_all_cost()