Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Problem about Reimplementation!!! #12

Open
lubinBoooos opened this issue Jun 11, 2024 · 4 comments
Open

Problem about Reimplementation!!! #12

lubinBoooos opened this issue Jun 11, 2024 · 4 comments

Comments

@lubinBoooos
Copy link

Dear author,
I try ur code to reimplement the performance of KD, but I cannot get same result as ur paper mentioned. Can u provide some training log about the best performance?

@RunpeiDong
Copy link
Owner

Hi @lubinBoooos,

It's here.

@lubinBoooos
Copy link
Author

Hi @RunpeiDong,
I followed ur log, while training, I found that my KD loss decreasing faster, and I cannot find the kd_cfg setting in ur log, so I want to know ur hyperparameters: num_voxels and kneighbours settings. Currently, I set it by num_voxels=6000, kneighbours=128.

@RunpeiDong
Copy link
Owner

Which model and which dataset?

@lubinBoooos
Copy link
Author

pointpillar 16x on KITTI dataset, I got result:
Overall AP40@easy, moderate, hard:
bbox AP40:72.5636, 64.4526, 61.3323
bev AP40:70.5804, 61.2102, 57.6306
3d AP40:63.7857, 52.1458, 48.4905
aos AP40:61.45, 53.31, 50.35

while ur log :
Overall AP40@easy, moderate, hard:
bbox AP40:76.0208, 66.9024, 63.6359
bev AP40:73.5277, 63.4987, 59.6674
3d AP40:67.2419, 54.9371, 50.9578
aos AP40:65.59, 56.35, 53.32

Here is my config:
sys.platform: linux
Python: 3.8.8 (default, Apr 13 2021, 19:58:26) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: NVIDIA GeForce RTX 3090
CUDA_HOME: /usr/local/cuda-11.3
NVCC: Build cuda_11.3.r11.3/compiler.29745058_0
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
PyTorch: 1.10.0
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX512
  • CUDA Runtime 11.3
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
  • CuDNN 8.2
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.11.0
OpenCV: 4.9.0
MMCV: 1.4.8
MMCV Compiler: GCC 9.4
MMCV CUDA Compiler: 11.3
MMDetection: 2.22.0
MMSegmentation: 0.22.1
MMDetection3D: 1.0.0rc0+a5dc465

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants