-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexamples.py
571 lines (498 loc) · 18.1 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import numpy as np
from tnsu.utils import plot_convergence_curve
from tnsu.tensor_network import TensorNetwork, DEFAULT_NETWORKS_FOLDER
import tnsu.simple_update as su
import tnsu.structure_matrix_constructor as smg
import tnsu.math_objects as mo
from typing import List
from numpy import ndarray
def load_a_tensor_network_from_memory(
structure_matrix,
network_name="AFH_10x10_obc_D_4",
) -> TensorNetwork:
"""
Loads a Tensor Network state from memory (given in package)
:params structure_matrix: the loaded tensor network corresponding structure matrix
:param network_name: The name of the network as it is saved in DEFAULT_NETWORKS_FOLDER
:return: A Tensor Network object
"""
net_names = ["AFH_10x10_obc_D_4", "AFH_20x20_obc_D_4", "AFH_20x20_pbc_D_4"]
assert network_name in net_names, (
f'There is no network "{network_name}" in memory. ' f"Please choose from: \n {net_names}."
)
dir_path = DEFAULT_NETWORKS_FOLDER
return load_a_tensor_network_state(structure_matrix, network_name, dir_path)
def load_a_tensor_network_state(structure_matrix, filename, dir_path) -> TensorNetwork:
"""
Load an Antiferromagnetic Heisenberg PEPS ground state Tensor Network and computes its energy per site.
:return: The Tensor Network object
"""
afh_tn = TensorNetwork(
structure_matrix=structure_matrix,
network_name=filename,
dir_path=dir_path,
tensors=None,
weights=None,
)
afh_tn.load_network()
# AFH Hamiltonian interaction parameters
j_ij = [1.0] * afh_tn.structure_matrix.shape[1]
# Pauli matrices
pauli_x = np.array([[0, 1], [1, 0]])
pauli_y = np.array([[0, -1j], [1j, 0]])
pauli_z = np.array([[1, 0], [0, -1]])
# Construct the Hamiltonian's spin operators
s_i = [pauli_x / 2.0, pauli_y / 2.0, pauli_z / 2.0]
s_j = [pauli_x / 2.0, pauli_y / 2.0, pauli_z / 2.0]
s_k = [pauli_x / 2.0]
# Set the Simple Update algorithm environment with the loaded Tensor Network
afh_tn_su = su.SimpleUpdate(tensor_network=afh_tn, dts=[], j_ij=j_ij, h_k=0.0, s_i=s_i, s_j=s_j, s_k=s_k)
energy = afh_tn_su.energy_per_site()
print(f"Loading Tensor Network: {filename}.")
print(f"The Tensor Network energy per-site (according to the AFH Hamiltonian) is: {energy}.")
return afh_tn
def transverse_ising_field_ground_state_experiment(
smat: np.array,
d_max_=None,
error: float = 1e-6,
max_iterations: int = 200,
trans_field_op: str = "x",
dts=None,
h_k: float = 0.0,
dir_path: str = "../tmp/networks",
plot_results: bool = True,
save_network: bool = False,
seed: int = 42,
exp_name: str = "",
) -> tuple[list[TensorNetwork], list[float]]:
"""
1. For each `d` in `d_max`, construct a random Tensor Network state with spin dimension `2`.
2. Run Simple Update with the -\\sigma_z \\cdot \\sigma_z -h\\sigma_k interactions Hamiltonian to find the Tensor
Network ground state.
3. Plot the results if specified.
4. Return a list of networks and their energies according to the `d_max` list.
:param smat: The structure matrix of the Tensor Network.
:param d_max_: A list of maximal virtual bond dimensions, one for each experiment.
:param error: The maximum allowed L2 norm convergence error (between two consecutive weight vectors).
:param max_iterations: The maximum number of Simple Update iterations per `dt`.
:param trans_field_op: The transverse field operator name ('x', 'y', or 'z').
:param dts: List of `dt` values for Imaginary Time Evolution (ITE).
:param h_k: The Hamiltonian's magnetic field constant (for single spin energy).
:param dir_path: Path for saving the networks.
:param plot_results: Boolean indicating whether to plot the results (True to plot, False to not plot).
:param save_network: Boolean indicating whether to save the resulting networks.
:param seed: Integer for seeding the numpy random functions.
:param exp_name: The name of the experiment.
:return: A list of networks and a list of ground state energies.
"""
if dts is None:
dts = [0.1, 0.01, 0.001, 0.0001, 0.00001]
if d_max_ is None:
d_max_ = [3]
assert trans_field_op in ["x", "y", "z"], (
f"the trans_field_op variable should be 'x', 'y', or 'z', " f"instead got {trans_field_op}."
)
np.random.seed(seed)
networks = []
energies = []
# Construct the spin operators for the Hamiltonian
# Pauli matrices
pauli_x = np.array([[0, 1], [1, 0]])
pauli_y = np.array([[0, -1j], [1j, 0]])
pauli_z = np.array([[1, 0], [0, -1]])
s_i = [pauli_z]
s_j = [pauli_z]
s_k = []
if trans_field_op == "x":
s_k.append(pauli_x)
elif trans_field_op == "y":
s_k.append(pauli_y)
elif trans_field_op == "z":
s_k.append(pauli_z)
n_tensors, m_edges = smat.shape
j_ij = [1.0] * m_edges
print(f"There are {m_edges} edges, and {n_tensors} tensors.")
# Run Simple Update
for d_max in d_max_:
# create Tensor Network name for saving
network_name = (
"TIF_"
+ trans_field_op
+ "_"
+ exp_name
+ "__"
+ "h_"
+ str(h_k)
+ "__"
+ "D_"
+ str(d_max)
+ "__"
+ "spin_1/2"
)
# create the Tensor Network object
tn = TensorNetwork(
weights=None,
tensors=None,
structure_matrix=smat,
virtual_dim=2,
spin_dim=int(2),
network_name=network_name,
dir_path=dir_path,
)
# create the Simple Update environment
tn_su = su.SimpleUpdate(
tensor_network=tn,
dts=dts,
j_ij=j_ij,
h_k=h_k,
s_i=s_i,
s_j=s_j,
s_k=s_k,
d_max=d_max,
max_iterations=max_iterations,
convergence_error=error,
log_energy=True,
print_process=True,
)
# run Simple Update algorithm over the Tensor Network state
tn_su.run()
# compute the energy per-site observable
energy = tn_su.energy_per_site()
print(f"| D max: {d_max} | Energy: {energy}\n")
energies.append(energy)
# plot su convergence / energy curve
if plot_results:
plot_convergence_curve(tn_su)
# save the tensor network
if save_network:
tn.save_network()
# add to networks list
networks.append(tn)
return networks, energies
def afh_ground_state_experiment(
smat: np.array,
spin: float = 0.5,
d_max_=None,
error: float = 1e-6,
max_iterations: int = 200,
dts=None,
dir_path: str = "../tmp/networks",
plot_results: bool = True,
save_network: bool = False,
seed: int = 42,
exp_name: str = "",
) -> tuple[list[TensorNetwork], list[float]]:
"""
1. For each value in `d_max`, construct a random Tensor Network state with spin dimension `spin`.
2. Run Simple Update with the Hamiltonian H = S_i⋅S_j interactions to find the Tensor Network ground state.
3. Plot the results if specified.
4. Return a list of networks and their energies according to the `d_max` list.
:param smat: The structure matrix of the Tensor Network.
:param spin: The physical spin of the tensor network, a half-integer (e.g., 0.5, 1, 1.5, 2, ...).
:param d_max_: A list of maximal virtual bond dimensions, one for each experiment.
:param error: The maximum allowed L2 norm convergence error (between two consecutive weight vectors).
:param max_iterations: The maximum number of Simple Update iterations per `dt`.
:param dts: List of `dt` values for Imaginary Time Evolution (ITE).
:param dir_path: Path for saving the networks.
:param plot_results: Boolean indicating whether to plot the results (True to plot, False to not plot).
:param save_network: Boolean indicating whether to save the resulting networks.
:param seed: Integer for seeding the numpy random functions.
:param exp_name: The name of the experiment.
:return: A list of networks and a list of ground state energies.
"""
if dts is None:
dts = [0.1, 0.01, 0.001, 0.0001, 0.00001]
if d_max_ is None:
d_max_ = [3]
np.random.seed(seed)
networks = []
energies = []
# Get spin operators
sx, sy, sz = mo.spin_operators(spin)
# Construct the spin operators for the Hamiltonian
s_i = [sx, sy, sz]
s_j = [sx, sy, sz]
s_k: List[ndarray] = []
# Get AFH J_{ij} weights and set field to zero
n_tensors, m_edges = smat.shape
j_ij = [1.0] * m_edges
h_k = 0.0
print(f"There are {m_edges} edges, and {n_tensors} tensors.")
# Run Simple Update
for d_max in d_max_:
# create Tensor Network name for saving
network_name = "TN_AFH_" + exp_name + "__" + "D_" + str(d_max) + "__" + "spin_" + str(spin)
# create the Tensor Network object
tn = TensorNetwork(
weights=None,
tensors=None,
structure_matrix=smat,
virtual_dim=2,
spin_dim=int(2 * spin + 1),
network_name=network_name,
dir_path=dir_path,
)
# create the Simple Update environment
tn_su = su.SimpleUpdate(
tensor_network=tn,
dts=dts,
j_ij=j_ij,
h_k=h_k,
s_i=s_i,
s_j=s_j,
s_k=s_k,
d_max=d_max,
max_iterations=max_iterations,
convergence_error=error,
log_energy=True,
print_process=True,
)
# run Simple Update algorithm over the Tensor Network state
tn_su.run()
# compute the energy per-site observable
energy = tn_su.energy_per_site()
print(f"| D max: {d_max} | Energy: {energy}\n")
energies.append(energy)
# plot su convergence / energy curve
if plot_results:
plot_convergence_curve(tn_su)
# save the tensor network
if save_network:
tn.save_network()
# add to networks list
networks.append(tn)
return networks, energies
def afh_chain_spin_half_ground_state_experiment(
d_max_=None,
error: float = 1e-6,
max_iterations: int = 200,
dts=None,
dir_path: str = "../tmp/networks",
plot_results: bool = True,
save_network: bool = False,
seed: int = 42,
exp_name: str = "",
) -> tuple[list[TensorNetwork], list[float]]:
"""
AFH infinite chain spin half ground state experiment, see `afh_ground_state_experiment()` function docstrings
for variables clarifications.
"""
print("Run AFH infinite chain spin half ground state experiment...")
exp_name = "_chain_" + exp_name
spin = 0.5
smat = smg.infinite_structure_matrix_dict("chain")
return afh_ground_state_experiment(
smat=smat,
spin=spin,
d_max_=d_max_,
error=error,
max_iterations=max_iterations,
dts=dts,
dir_path=dir_path,
plot_results=plot_results,
save_network=save_network,
seed=seed,
exp_name=exp_name,
)
def afh_star_spin_half_ground_state_experiment(
d_max_=None,
error: float = 1e-6,
max_iterations: int = 200,
dts=None,
dir_path: str = "../tmp/networks",
plot_results: bool = True,
save_network: bool = False,
seed: int = 42,
exp_name: str = "",
) -> tuple[list[TensorNetwork], list[float]]:
"""
AFH infinite star spin half ground state experiment, see `afh_ground_state_experiment()` function docstrings
for variables clarifications.
"""
print("Run AFH infinite star spin half ground state experiment...")
exp_name = "_star_" + exp_name
spin = 0.5
smat = smg.infinite_structure_matrix_dict("star")
return afh_ground_state_experiment(
smat=smat,
spin=spin,
d_max_=d_max_,
error=error,
max_iterations=max_iterations,
dts=dts,
dir_path=dir_path,
plot_results=plot_results,
save_network=save_network,
seed=seed,
exp_name=exp_name,
)
def afh_cubic_spin_half_ground_state_experiment(
d_max_=None,
error: float = 1e-6,
max_iterations: int = 200,
dts=None,
dir_path: str = "../tmp/networks",
plot_results: bool = True,
save_network: bool = False,
seed: int = 42,
exp_name: str = "",
) -> tuple[list[TensorNetwork], list[float]]:
"""
AFH infinite cube spin half ground state experiment, see `afh_ground_state_experiment()` function docstrings
for variables clarifications.
"""
print("Run AFH infinite star spin half ground state experiment...")
exp_name = "_cube_" + exp_name
spin = 0.5
smat = smg.infinite_structure_matrix_dict("cube")
return afh_ground_state_experiment(
smat=smat,
spin=spin,
d_max_=d_max_,
error=error,
max_iterations=max_iterations,
dts=dts,
dir_path=dir_path,
plot_results=plot_results,
save_network=save_network,
seed=seed,
exp_name=exp_name,
)
def fhf_ground_state_experiment(
smat: np.array,
spin: float = 0.5,
d_max_=None,
error: float = 1e-6,
transverse_field_op: str = "x",
h_k: float = 0.0,
max_iterations: int = 200,
dts=None,
dir_path: str = "../tmp/networks",
plot_results: bool = True,
save_network: bool = False,
seed: int = 42,
exp_name: str = "",
) -> tuple[list[TensorNetwork], list[float]]:
"""
1. For each value in `d_max`, construct a random Tensor Network state with spin dimension `spin`.
2. Run Simple Update with the Hamiltonian H = -S_i⋅S_j -hS_k interactions to find the Tensor Network ground state.
3. Plot the results if specified.
4. Return a list of networks and their energies according to the `d_max` list.
:param smat: The structure matrix of the Tensor Network.
:param spin: The physical spin of the tensor network, a half-integer (e.g., 0.5, 1, 1.5, 2, ...).
:param d_max_: A list of maximal virtual bond dimensions, one for each experiment.
:param error: The maximum allowed L2 norm convergence error (between two consecutive weight vectors).
:param transverse_field_op: Transverse field operator 'x', 'y' or 'z'
:param h_k: Transverse field amplitude
:param max_iterations: The maximum number of Simple Update iterations per `dt`.
:param dts: List of `dt` values for Imaginary Time Evolution (ITE).
:param dir_path: Path for saving the networks.
:param plot_results: Boolean indicating whether to plot the results (True to plot, False to not plot).
:param save_network: Boolean indicating whether to save the resulting networks.
:param seed: Integer for seeding the numpy random functions.
:param exp_name: The name of the experiment.
:return: A list of networks and a list of ground state energies.
"""
if dts is None:
dts = [0.1, 0.01, 0.001, 0.0001, 0.00001]
if d_max_ is None:
d_max_ = [3]
np.random.seed(seed)
networks = []
energies = []
# Get spin operators
sx, sy, sz = mo.spin_operators(spin)
# Construct the spin operators for the Hamiltonian
s_i = [sx, sy, sz]
s_j = [sx, sy, sz]
s_k = []
if transverse_field_op == "x":
s_k.append(sx)
elif transverse_field_op == "y":
s_k.append(sy)
elif transverse_field_op == "z":
s_k.append(sz)
# Get AFH J_{ij} weights and set field to zero
n_tensors, m_edges = smat.shape
j_ij = [-1.0] * m_edges
print(f"There are {m_edges} edges, and {n_tensors} tensors.")
# Run Simple Update
for d_max in d_max_:
# create Tensor Network name for saving
network_name = "TN_FHF_" + exp_name + "__" + "D_" + str(d_max) + "__" + "spin_" + str(spin)
# create the Tensor Network object
tn = TensorNetwork(
weights=None,
tensors=None,
structure_matrix=smat,
virtual_dim=2,
spin_dim=int(2 * spin + 1),
network_name=network_name,
dir_path=dir_path,
)
# create the Simple Update environment
tn_su = su.SimpleUpdate(
tensor_network=tn,
dts=dts,
j_ij=j_ij,
h_k=h_k,
s_i=s_i,
s_j=s_j,
s_k=s_k,
d_max=d_max,
max_iterations=max_iterations,
convergence_error=error,
log_energy=True,
print_process=True,
)
# run Simple Update algorithm over the Tensor Network state
tn_su.run()
# compute the energy per-site observable
energy = tn_su.energy_per_site()
print(f"| D max: {d_max} | Energy: {energy}\n")
energies.append(energy)
# plot su convergence / energy curve
if plot_results:
plot_convergence_curve(tn_su)
# save the tensor network
if save_network:
tn.save_network()
# add to networks list
networks.append(tn)
return networks, energies
def fhf_pyrochlore_spin_half_ground_state_experiment(
d_max_=None,
error: float = 1e-6,
transverse_field_op: str = "x",
h_k: float = 0.0,
max_iterations: int = 200,
dts=None,
dir_path: str = "../tmp/networks",
plot_results: bool = True,
save_network: bool = False,
seed: int = 42,
exp_name: str = "",
) -> tuple[list[TensorNetwork], list[float]]:
"""
FHF infinite Pyrochlore spin half ground state experiment, see `fhf_ground_state_experiment()` function docstrings
for variables clarifications.
"""
print("Run FHF infinite Pyrochlore spin half ground state experiment...")
exp_name = "_pyrochlore_" + exp_name
spin = 0.5
smat = smg.infinite_structure_matrix_dict("pyrochlore")
return fhf_ground_state_experiment(
smat=smat,
spin=spin,
d_max_=d_max_,
error=error,
transverse_field_op=transverse_field_op,
h_k=h_k,
max_iterations=max_iterations,
dts=dts,
dir_path=dir_path,
plot_results=plot_results,
save_network=save_network,
seed=seed,
exp_name=exp_name,
)