Skip to content

Latest commit

 

History

History
648 lines (567 loc) · 19.6 KB

CSG_Smart.md

File metadata and controls

648 lines (567 loc) · 19.6 KB

pragma solidity ^0.8.7;

/**

  • @dev Interface of the ERC20 standard as defined in the EIP. / interface IERC20 { /*

    • @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256);

    /**

    • @dev Returns the amount of tokens owned by account. */ function balanceOf(address account) external view returns (uint256);

    /**

    • @dev Moves amount tokens from the caller's account to recipient.
    • Returns a boolean value indicating whether the operation succeeded.
    • Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool);

    /**

    • @dev Returns the remaining number of tokens that spender will be
    • allowed to spend on behalf of owner through {transferFrom}. This is
    • zero by default.
    • This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256);

    /**

    • @dev Sets amount as the allowance of spender over the caller's tokens.
    • Returns a boolean value indicating whether the operation succeeded.
    • IMPORTANT: Beware that changing an allowance with this method brings the risk
    • that someone may use both the old and the new allowance by unfortunate
    • transaction ordering. One possible solution to mitigate this race
    • condition is to first reduce the spender's allowance to 0 and set the
    • desired value afterwards:
    • ethereum/EIPs#20 (comment)
    • Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool);

    /**

    • @dev Moves amount tokens from sender to recipient using the
    • allowance mechanism. amount is then deducted from the caller's
    • allowance.
    • Returns a boolean value indicating whether the operation succeeded.
    • Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool);

    /**

    • @dev Emitted when value tokens are moved from one account (from) to
    • another (to).
    • Note that value may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value);

    /**

    • @dev Emitted when the allowance of a spender for an owner is set by
    • a call to {approve}. value is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }

// File @openzeppelin/contracts/token/ERC20/extensions/[email protected]

// OpenZeppelin Contracts v4.4.0 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.7;

/**

  • @dev Interface for the optional metadata functions from the ERC20 standard.

  • Available since v4.1. / interface IERC20Metadata is IERC20 { /*

    • @dev Returns the name of the token. */ function name() external view returns (string memory);

    /**

    • @dev Returns the symbol of the token. */ function symbol() external view returns (string memory);

    /**

    • @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }

// File @openzeppelin/contracts/utils/[email protected]

// OpenZeppelin Contracts v4.4.0 (utils/Context.sol)

pragma solidity ^0.8.7;

/**

  • @dev Provides information about the current execution context, including the

  • sender of the transaction and its data. While these are generally available

  • via msg.sender and msg.data, they should not be accessed in such a direct

  • manner, since when dealing with meta-transactions the account sending and

  • paying for execution may not be the actual sender (as far as an application

  • is concerned).

  • This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; }

    function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }

// File @openzeppelin/contracts/token/ERC20/[email protected]

// OpenZeppelin Contracts v4.4.0 (token/ERC20/ERC20.sol)

pragma solidity ^0.8.7;

/**

  • @dev Implementation of the {IERC20} interface.

  • This implementation is agnostic to the way tokens are created. This means

  • that a supply mechanism has to be added in a derived contract using {_mint}.

  • For a generic mechanism see {ERC20PresetMinterPauser}.

  • TIP: For a detailed writeup see our guide

  • https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How

  • to implement supply mechanisms].

  • We have followed general OpenZeppelin Contracts guidelines: functions revert

  • instead returning false on failure. This behavior is nonetheless

  • conventional and does not conflict with the expectations of ERC20

  • applications.

  • Additionally, an {Approval} event is emitted on calls to {transferFrom}.

  • This allows applications to reconstruct the allowance for all accounts just

  • by listening to said events. Other implementations of the EIP may not emit

  • these events, as it isn't required by the specification.

  • Finally, the non-standard {decreaseAllowance} and {increaseAllowance}

  • functions have been added to mitigate the well-known issues around setting

  • allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name; string private _symbol;

    /**

    • @dev Sets the values for {name} and {symbol}.
    • The default value of {decimals} is 18. To select a different value for
    • {decimals} you should overload it.
    • All two of these values are immutable: they can only be set once during
    • construction. */ constructor(string memory name_, string memory symbol_) { name = name; symbol = symbol; }

    /**

    • @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; }

    /**

    • @dev Returns the symbol of the token, usually a shorter version of the
    • name. */ function symbol() public view virtual override returns (string memory) { return _symbol; }

    /**

    • @dev Returns the number of decimals used to get its user representation.
    • For example, if decimals equals 2, a balance of 505 tokens should
    • be displayed to a user as 5.05 (505 / 10 ** 2).
    • Tokens usually opt for a value of 18, imitating the relationship between
    • Ether and Wei. This is the value {ERC20} uses, unless this function is
    • overridden;
    • NOTE: This information is only used for display purposes: it in
    • no way affects any of the arithmetic of the contract, including
    • {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; }

    /**

    • @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; }

    /**

    • @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; }

    /**

    • @dev See {IERC20-transfer}.
    • Requirements:
      • recipient cannot be the zero address.
      • the caller must have a balance of at least amount. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; }

    /**

    • @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; }

    /**

    • @dev See {IERC20-approve}.
    • Requirements:
      • spender cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; }

    /**

    • @dev See {IERC20-transferFrom}.

    • Emits an {Approval} event indicating the updated allowance. This is not

    • required by the EIP. See the note at the beginning of {ERC20}.

    • Requirements:

      • sender and recipient cannot be the zero address.
      • sender must have a balance of at least amount.
      • the caller must have allowance for sender's tokens of at least
    • amount. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount);

      uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, 'ERC20: transfer amount exceeds allowance'); unchecked { _approve(sender, _msgSender(), currentAllowance - amount); }

      return true; }

    /**

    • @dev Atomically increases the allowance granted to spender by the caller.
    • This is an alternative to {approve} that can be used as a mitigation for
    • problems described in {IERC20-approve}.
    • Emits an {Approval} event indicating the updated allowance.
    • Requirements:
      • spender cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue); return true; }

    /**

    • @dev Atomically decreases the allowance granted to spender by the caller.

    • This is an alternative to {approve} that can be used as a mitigation for

    • problems described in {IERC20-approve}.

    • Emits an {Approval} event indicating the updated allowance.

    • Requirements:

      • spender cannot be the zero address.
      • spender must have allowance for the caller of at least
    • subtractedValue. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require( currentAllowance >= subtractedValue, 'ERC20: decreased allowance below zero' ); unchecked { _approve(_msgSender(), spender, currentAllowance - subtractedValue); }

      return true; }

    /**

    • @dev Moves amount of tokens from sender to recipient.

    • This internal function is equivalent to {transfer}, and can be used to

    • e.g. implement automatic token fees, slashing mechanisms, etc.

    • Emits a {Transfer} event.

    • Requirements:

      • sender cannot be the zero address.
      • recipient cannot be the zero address.
      • sender must have a balance of at least amount. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), 'ERC20: transfer from the zero address'); require(recipient != address(0), 'ERC20: transfer to the zero address');

      _beforeTokenTransfer(sender, recipient, amount);

      uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, 'ERC20: transfer amount exceeds balance'); unchecked { _balances[sender] = senderBalance - amount; } _balances[recipient] += amount;

      emit Transfer(sender, recipient, amount);

      _afterTokenTransfer(sender, recipient, amount); }

    /** @dev Creates amount tokens and assigns them to account, increasing

    • the total supply.

    • Emits a {Transfer} event with from set to the zero address.

    • Requirements:

      • account cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), 'ERC20: mint to the zero address');

      _beforeTokenTransfer(address(0), account, amount);

      _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount);

      _afterTokenTransfer(address(0), account, amount); }

    /**

    • @dev Destroys amount tokens from account, reducing the

    • total supply.

    • Emits a {Transfer} event with to set to the zero address.

    • Requirements:

      • account cannot be the zero address.
      • account must have at least amount tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), 'ERC20: burn from the zero address');

      _beforeTokenTransfer(account, address(0), amount);

      uint256 accountBalance = _balances[account]; require(accountBalance >= amount, 'ERC20: burn amount exceeds balance'); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount;

      emit Transfer(account, address(0), amount);

      _afterTokenTransfer(account, address(0), amount); }

    /**

    • @dev Sets amount as the allowance of spender over the owner s tokens.

    • This internal function is equivalent to approve, and can be used to

    • e.g. set automatic allowances for certain subsystems, etc.

    • Emits an {Approval} event.

    • Requirements:

      • owner cannot be the zero address.
      • spender cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), 'ERC20: approve from the zero address'); require(spender != address(0), 'ERC20: approve to the zero address');

      _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); }

    /**

    • @dev Hook that is called before any transfer of tokens. This includes
    • minting and burning.
    • Calling conditions:
      • when from and to are both non-zero, amount of from's tokens
    • will be transferred to to.
      • when from is zero, amount tokens will be minted for to.
      • when to is zero, amount of from's tokens will be burned.
      • from and to are never both zero.
    • To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {}

    /**

    • @dev Hook that is called after any transfer of tokens. This includes
    • minting and burning.
    • Calling conditions:
      • when from and to are both non-zero, amount of from's tokens
    • has been transferred to to.
      • when from is zero, amount tokens have been minted for to.
      • when to is zero, amount of from's tokens have been burned.
      • from and to are never both zero.
    • To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }

// File @openzeppelin/contracts/token/ERC20/extensions/[email protected]

// OpenZeppelin Contracts v4.4.0 (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.7;

/**

  • @dev Extension of {ERC20} that allows token holders to destroy both their own

  • tokens and those that they have an allowance for, in a way that can be

  • recognized off-chain (via event analysis). / abstract contract ERC20Burnable is Context, ERC20 { /*

    • @dev Destroys amount tokens from the caller.
    • See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); }

    /**

    • @dev Destroys amount tokens from account, deducting from the caller's
    • allowance.
    • See {ERC20-_burn} and {ERC20-allowance}.
    • Requirements:
      • the caller must have allowance for accounts's tokens of at least
    • amount. */ function burnFrom(address account, uint256 amount) public virtual { uint256 currentAllowance = allowance(account, _msgSender()); require(currentAllowance >= amount, 'ERC20: burn amount exceeds allowance'); unchecked { _approve(account, _msgSender(), currentAllowance - amount); } _burn(account, amount); } }

interface ILiquidityRestrictor { function assureByAgent( address token, address from, address to ) external returns (bool allow, string memory message);

function assureLiquidityRestrictions(address from, address to)
    external
    returns (bool allow, string memory message);

}

interface IAntisnipe { function assureCanTransfer( address sender, address from, address to, uint256 amount ) external returns (bool response); }

// File contracts/CSG.sol

abstract contract Ownable is Context { address private _owner;

event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

/**
 * @dev Initializes the contract setting the deployer as the initial owner.
 */
constructor() {
    _transferOwnership(_msgSender());
}

/**
 * @dev Returns the address of the current owner.
 */
function owner() public view virtual returns (address) {
    return _owner;
}

/**
 * @dev Throws if called by any account other than the owner.
 */
modifier onlyOwner() {
    require(owner() == _msgSender(), 'Ownable: caller is not the owner');
    _;
}

/**
 * @dev Leaves the contract without owner. It will not be possible to call
 * `onlyOwner` functions anymore. Can only be called by the current owner.
 *
 * NOTE: Renouncing ownership will leave the contract without an owner,
 * thereby removing any functionality that is only available to the owner.
 */
function renounceOwnership() public virtual onlyOwner {
    _transferOwnership(address(0));
}

/**
 * @dev Transfers ownership of the contract to a new account (`newOwner`).
 * Can only be called by the current owner.
 */
function transferOwnership(address newOwner) public virtual onlyOwner {
    require(newOwner != address(0), 'Ownable: new owner is the zero address');
    _transferOwnership(newOwner);
}

/**
 * @dev Transfers ownership of the contract to a new account (`newOwner`).
 * Internal function without access restriction.
 */
function _transferOwnership(address newOwner) internal virtual {
    address oldOwner = _owner;
    _owner = newOwner;
    emit OwnershipTransferred(oldOwner, newOwner);
}

}

pragma solidity ^0.8.7;

contract CSGToken is ERC20Burnable, Ownable { constructor(string memory name) ERC20(name, 'CSG') { _mint(msg.sender, 100_000_000e18); }

}