-
Notifications
You must be signed in to change notification settings - Fork 0
/
omniglot_loader.py
executable file
·431 lines (332 loc) · 17.1 KB
/
omniglot_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import os
import random
import numpy as np
import math
from PIL import Image
from image_augmentor import ImageAugmentor
class OmniglotLoader:
"""Class that loads and prepares the Omniglot dataset
This Class was constructed to read the Omniglot alphabets, separate the
training, validation and evaluation test. It also provides function for
geting one-shot task batches.
Attributes:
dataset_path: path of Omniglot Dataset
train_dictionary: dictionary of the files of the train set (background set).
This dictionary is used to load the batch for training and validation.
evaluation_dictionary: dictionary of the evaluation set.
image_width: self explanatory
image_height: self explanatory
batch_size: size of the batch to be used in training
use_augmentation: boolean that allows us to select if data augmentation is
used or not
image_augmentor: instance of class ImageAugmentor that augments the images
with the affine transformations referred in the paper
"""
def __init__(self, dataset_path, use_augmentation, batch_size):
"""Inits OmniglotLoader with the provided values for the attributes.
It also creates an Image Augmentor object and loads the train set and
evaluation set into dictionaries for future batch loading.
Arguments:
dataset_path: path of Omniglot dataset
use_augmentation: boolean that allows us to select if data augmentation
is used or not
batch_size: size of the batch to be used in training
"""
self.dataset_path = dataset_path
self.train_dictionary = {}
self.evaluation_dictionary = {}
self.image_width = 105
self.image_height = 105
self.batch_size = batch_size
self.use_augmentation = use_augmentation
self.__train_alphabets = []
self.__validation_alphabets = []
self.__evaluation_alphabets = []
self.__current_train_alphabet_index = 0
self.__current_validation_alphabet_index = 0
self.__current_evaluation_alphabet_index = 0
self.load_dataset()
if (self.use_augmentation):
self.image_augmentor = self.createAugmentor()
else:
self.use_augmentation = []
def load_dataset(self):
"""Loads the alphabets into dictionaries
Loads the Omniglot dataset and stores the available images for each
alphabet for each of the train and evaluation set.
"""
train_path = os.path.join(self.dataset_path, 'images_background')
validation_path = os.path.join(self.dataset_path, 'images_evaluation')
# First let's take care of the train alphabets
for alphabet in os.listdir(train_path):
alphabet_path = os.path.join(train_path, alphabet)
current_alphabet_dictionary = {}
for character in os.listdir(alphabet_path):
character_path = os.path.join(alphabet_path, character)
current_alphabet_dictionary[character] = os.listdir(
character_path)
self.train_dictionary[alphabet] = current_alphabet_dictionary
# Now it's time for the validation alphabets
for alphabet in os.listdir(validation_path):
alphabet_path = os.path.join(validation_path, alphabet)
current_alphabet_dictionary = {}
for character in os.listdir(alphabet_path):
character_path = os.path.join(alphabet_path, character)
current_alphabet_dictionary[character] = os.listdir(
character_path)
self.evaluation_dictionary[alphabet] = current_alphabet_dictionary
def createAugmentor(self):
""" Creates ImageAugmentor object with the parameters for image augmentation
Rotation range was set in -15 to 15 degrees
Shear Range was set in between -0.3 and 0.3 radians
Zoom range between 0.8 and 2
Shift range was set in +/- 5 pixels
Returns:
ImageAugmentor object
"""
rotation_range = [-15, 15]
shear_range = [-0.3 * 180 / math.pi, 0.3 * 180 / math.pi]
zoom_range = [0.8, 2]
shift_range = [5, 5]
return ImageAugmentor(0.5, shear_range, rotation_range, shift_range, zoom_range)
def split_train_datasets(self):
""" Splits the train set in train and validation
Divide the 30 train alphabets in train and validation with
# a 80% - 20% split (24 vs 6 alphabets)
"""
available_alphabets = list(self.train_dictionary.keys())
number_of_alphabets = len(available_alphabets)
train_indexes = random.sample(
range(0, number_of_alphabets - 1), int(0.8 * number_of_alphabets))
# If we sort the indexes in reverse order we can pop them from the list
# and don't care because the indexes do not change
train_indexes.sort(reverse=True)
for index in train_indexes:
self.__train_alphabets.append(available_alphabets[index])
available_alphabets.pop(index)
# The remaining alphabets are saved for validation
self.__validation_alphabets = available_alphabets
self.__evaluation_alphabets = list(self.evaluation_dictionary.keys())
def __convert_path_list_to_images_and_labels(self, path_list, is_one_shot_task):
""" Loads the images and its correspondent labels from the path
Take the list with the path from the current batch, read the images and
return the pairs of images and the labels
If the batch is from train or validation the labels are alternately 1's and
0's. If it is a evaluation set only the first pair has label 1
Arguments:
path_list: list of images to be loaded in this batch
is_one_shot_task: flag sinalizing if the batch is for one-shot task or if
it is for training
Returns:
pairs_of_images: pairs of images for the current batch
labels: correspondent labels -1 for same class, 0 for different classes
"""
number_of_pairs = int(len(path_list) / 2)
pairs_of_images = [np.zeros(
(number_of_pairs, self.image_height, self.image_height, 1)) for i in range(2)]
labels = np.zeros((number_of_pairs, 1))
for pair in range(number_of_pairs):
image = Image.open(path_list[pair * 2])
image = np.asarray(image).astype(np.float64)
image = image / image.std() - image.mean()
pairs_of_images[0][pair, :, :, 0] = image
image = Image.open(path_list[pair * 2 + 1])
image = np.asarray(image).astype(np.float64)
image = image / image.std() - image.mean()
pairs_of_images[1][pair, :, :, 0] = image
if not is_one_shot_task:
if (pair + 1) % 2 == 0:
labels[pair] = 0
else:
labels[pair] = 1
else:
if pair == 0:
labels[pair] = 1
else:
labels[pair] = 0
if not is_one_shot_task:
random_permutation = np.random.permutation(number_of_pairs)
labels = labels[random_permutation]
pairs_of_images[0][:, :, :,
:] = pairs_of_images[0][random_permutation, :, :, :]
pairs_of_images[1][:, :, :,
:] = pairs_of_images[1][random_permutation, :, :, :]
return pairs_of_images, labels
def get_train_batch(self):
""" Loads and returns a batch of train images
Get a batch of pairs from the training set. Each batch will contain
images from a single alphabet. I decided to select one single example
from random n/2 characters in each alphabet. If the current alphabet
has lower number of characters than n/2 (some of them have 14) we
sample repeated classed for that batch per character in the alphabet
to pair with a different categories. In the other half of the batch
I selected pairs of same characters. In resume we will have a batch
size of n, with n/2 pairs of different classes and n/2 pairs of the same
class. Each batch will only contains samples from one single alphabet.
Returns:
pairs_of_images: pairs of images for the current batch
labels: correspondent labels -1 for same class, 0 for different classes
"""
current_alphabet = self.__train_alphabets[self.__current_train_alphabet_index]
available_characters = list(
self.train_dictionary[current_alphabet].keys())
number_of_characters = len(available_characters)
bacth_images_path = []
# If the number of classes if less than self.batch_size/2
# we have to repeat characters
selected_characters_indexes = [random.randint(
0, number_of_characters-1) for i in range(self.batch_size)]
for index in selected_characters_indexes:
current_character = available_characters[index]
available_images = (self.train_dictionary[current_alphabet])[
current_character]
image_path = os.path.join(
self.dataset_path, 'images_background', current_alphabet, current_character)
# Random select a 3 indexes of images from the same character (Remember
# that for each character we have 20 examples).
image_indexes = random.sample(range(0, 19), 3)
image = os.path.join(
image_path, available_images[image_indexes[0]])
bacth_images_path.append(image)
image = os.path.join(
image_path, available_images[image_indexes[1]])
bacth_images_path.append(image)
# Now let's take care of the pair of images from different characters
image = os.path.join(
image_path, available_images[image_indexes[2]])
bacth_images_path.append(image)
different_characters = available_characters[:]
different_characters.pop(index)
different_character_index = random.sample(
range(0, number_of_characters - 1), 1)
current_character = different_characters[different_character_index[0]]
available_images = (self.train_dictionary[current_alphabet])[
current_character]
image_indexes = random.sample(range(0, 20), 1)
image_path = os.path.join(
self.dataset_path, 'images_background', current_alphabet, current_character)
image = os.path.join(
image_path, available_images[image_indexes[0]])
bacth_images_path.append(image)
self.__current_train_alphabet_index += 1
if (self.__current_train_alphabet_index > 23):
self.__current_train_alphabet_index = 0
images, labels = self.__convert_path_list_to_images_and_labels(
bacth_images_path, is_one_shot_task=False)
# Get random transforms if augmentation is on
if self.use_augmentation:
images = self.image_augmentor.get_random_transform(images)
return images, labels
def get_one_shot_batch(self, support_set_size, is_validation):
""" Loads and returns a batch for one-shot task images
Gets a one-shot batch for evaluation or validation set, it consists in a
single image that will be compared with a support set of images. It returns
the pair of images to be compared by the model and it's labels (the first
pair is always 1) and the remaining ones are 0's
Returns:
pairs_of_images: pairs of images for the current batch
labels: correspondent labels -1 for same class, 0 for different classes
"""
# Set some variables that will be different for validation and evaluation sets
if is_validation:
alphabets = self.__validation_alphabets
current_alphabet_index = self.__current_validation_alphabet_index
image_folder_name = 'images_background'
dictionary = self.train_dictionary
else:
alphabets = self.__evaluation_alphabets
current_alphabet_index = self.__current_evaluation_alphabet_index
image_folder_name = 'images_evaluation'
dictionary = self.evaluation_dictionary
current_alphabet = alphabets[current_alphabet_index]
available_characters = list(dictionary[current_alphabet].keys())
number_of_characters = len(available_characters)
bacth_images_path = []
test_character_index = random.sample(
range(0, number_of_characters), 1)
# Get test image
current_character = available_characters[test_character_index[0]]
available_images = (dictionary[current_alphabet])[current_character]
image_indexes = random.sample(range(0, 20), 2)
image_path = os.path.join(
self.dataset_path, image_folder_name, current_alphabet, current_character)
test_image = os.path.join(
image_path, available_images[image_indexes[0]])
bacth_images_path.append(test_image)
image = os.path.join(
image_path, available_images[image_indexes[1]])
bacth_images_path.append(image)
# Let's get our test image and a pair corresponding to
if support_set_size == -1:
number_of_support_characters = number_of_characters
else:
number_of_support_characters = support_set_size
different_characters = available_characters[:]
different_characters.pop(test_character_index[0])
# There may be some alphabets with less than 20 characters
if number_of_characters < number_of_support_characters:
number_of_support_characters = number_of_characters
support_characters_indexes = random.sample(
range(0, number_of_characters - 1), number_of_support_characters - 1)
for index in support_characters_indexes:
current_character = different_characters[index]
available_images = (dictionary[current_alphabet])[
current_character]
image_path = os.path.join(
self.dataset_path, image_folder_name, current_alphabet, current_character)
image_indexes = random.sample(range(0, 20), 1)
image = os.path.join(
image_path, available_images[image_indexes[0]])
bacth_images_path.append(test_image)
bacth_images_path.append(image)
images, labels = self.__convert_path_list_to_images_and_labels(
bacth_images_path, is_one_shot_task=True)
return images, labels
def one_shot_test(self, model, support_set_size, number_of_tasks_per_alphabet,
is_validation):
""" Prepare one-shot task and evaluate its performance
Make one shot task in validation and evaluation sets
if support_set_size = -1 we perform a N-Way one-shot task with
N being the total of characters in the alphabet
Returns:
mean_accuracy: mean accuracy for the one-shot task
"""
# Set some variables that depend on dataset
if is_validation:
alphabets = self.__validation_alphabets
print('\nMaking One Shot Task on validation alphabets:')
else:
alphabets = self.__evaluation_alphabets
print('\nMaking One Shot Task on evaluation alphabets:')
mean_global_accuracy = 0
for alphabet in alphabets:
mean_alphabet_accuracy = 0
for _ in range(number_of_tasks_per_alphabet):
images, _ = self.get_one_shot_batch(
support_set_size, is_validation=is_validation)
probabilities = model.predict_on_batch(images)
# Added this condition because noticed that sometimes the outputs
# of the classifier was almost the same in all images, meaning that
# the argmax would be always by defenition 0.
if np.argmax(probabilities) == 0 and probabilities.std()>0.01:
accuracy = 1.0
else:
accuracy = 0.0
mean_alphabet_accuracy += accuracy
mean_global_accuracy += accuracy
mean_alphabet_accuracy /= number_of_tasks_per_alphabet
print(alphabet + ' alphabet' + ', accuracy: ' +
str(mean_alphabet_accuracy))
if is_validation:
self.__current_validation_alphabet_index += 1
else:
self.__current_evaluation_alphabet_index += 1
mean_global_accuracy /= (len(alphabets) *
number_of_tasks_per_alphabet)
print('\nMean global accuracy: ' + str(mean_global_accuracy))
# reset counter
if is_validation:
self.__current_validation_alphabet_index = 0
else:
self.__current_evaluation_alphabet_index = 0
return mean_global_accuracy