-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsquare_root.py
162 lines (131 loc) · 4.71 KB
/
square_root.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: GBK -*-
import time
from multiplication import multiply
from utils import *
SQRT = []
SQURE = {}
for i in xrange(9, -1, -1):
num = i*i
t, u = num/10, num%10
SQURE[i] = (num, t, u)
SQRT.append((num, i, num/10, num%10))
def get_square(num):
return SQURE.get(num)
def get_root(num):
for square, root, t, u in SQRT:
if num >= square:
return root, square, t, u
# 根的新数字位,与根的最高位的NT(用于验证)
def get_new_remainder_from_nt(num_remainder, root_number, root_neighbor, digit_root):
n = 2 * digit_root * root_number
t = get_multiply_tens(2 * digit_root, root_neighbor)
num_remainder -= (n + t)
if num_remainder < 0:
return False
return correct_number(num_remainder)
# 根的新数字位,与该位(非最高位)上的UT(用于求余)
def get_new_remainder_from_ut(num_remainder, root_number, root_neighbor, digit_root):
u = get_multiply_unit(2 * digit_root, root_number)
t = get_multiply_tens(2 * digit_root, root_neighbor)
num_remainder -= (u + t)
if num_remainder < 0:
return False
return correct_number(num_remainder)
def square_root_loop(square_list, root=None, remainder=None, root_square=None, i=0, root_idx=1):
if root is None:
root = []
if remainder is None:
remainder = []
if root_square is None:
root_square = []
len_root = len(root)
len_square = len(square_list)
len_root_square = len(root_square)
calc_remainder = (root_idx > 0)
if calc_remainder:
# 求余运算
if i >= len_square:
return list_strip_zero(root), remainder
remainder.append(square_list[i])
new_remainder = remainder
if len_root > 1:
num_remainder = get_num_from_list(remainder)
if i < len_root_square:
num_remainder -= root_square[i]
digit_root = root[-1]
root_number = 0
root_neighbor = 0
if root_idx < len_root-1:
root_number = root[root_idx]
if root_idx < len_root-2:
root_neighbor = root[root_idx+1]
new_remainder = get_new_remainder_from_ut(num_remainder, root_number, root_neighbor, digit_root)
if new_remainder is False:
return False
finish_root = i >= (len_square - len_root) # 平方根已经求出来,现在是求余、验算部分
if finish_root:
return square_root_loop(square_list, root, new_remainder, root_square, i+1, root_idx+1)
else:
# 继续求平方根
return square_root_loop(square_list, root, new_remainder, root_square, i, 0)
else:
# 求根运算
num_remainder = get_num_from_list(remainder)
if len_root > 0:
root_number = root[0]
digit_root = min((num_remainder / 2) / root_number, 9)
root_neighbor = 0
root_number = root[0]
if len_root > 1:
root_neighbor = root[1]
root.append(digit_root)
_, t_square, u_square = get_square(digit_root)
root_square.append(t_square)
root_square.append(u_square)
while True:
# 如果新求的这个的digit_root,它的平方在该i位有值(刚添加进来的)
if i >= len_root_square:
num_remainder -= root_square[i]
new_remainder = get_new_remainder_from_nt(num_remainder, root_number, root_neighbor, digit_root)
if new_remainder is not False:
result = square_root_loop(square_list, root, new_remainder, root_square, i + 1)
if result is not False:
return result
digit_root -= 1
_, t_square, u_square = get_square(digit_root)
if i >= len_root_square:
num_remainder += root_square[i]
root[-1] = digit_root
root_square[-2] = t_square
root_square[-1] = u_square
else:
if len_square % 2 == 0 and i == 0:
return square_root_loop(square_list, [], remainder, [], i+1)
digit_root, digit_square, t_square, u_square = get_root(num_remainder)
if i > 0:
root_square.append(t_square)
root_square.append(u_square)
root.append(digit_root)
num_remainder -= digit_square
result = square_root_loop(square_list, root, correct_number(num_remainder), root_square, i+1)
if result is False:
return square_root_loop(square_list, [], remainder, [], i+1)
return result
def square_root(data):
square_list = correct_number(data)
return square_root_loop(square_list)
if __name__ == "__main__":
tm = time.clock()
print "root of 1 = ", square_root("1")
print "root of 81 = ", square_root("81")
print "root of 25 = ", square_root("25")
print "root of 225 = ", square_root("225")
print "root of 46500 = ", square_root("46500")
print "root of 10323369 = ", square_root("10323369")
print "root of 872079961 = ", square_root("872079961")
print "root of 9987634 = ", square_root("9987634")
print "root of 40094224 = ", square_root("40094224")
print "root of 103456 = ", square_root("103456")
print "root of 7695 = ", square_root("7695")
print "root of 769500 = ", square_root("769500")
print time.clock() - tm