-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvq_eval.py
201 lines (171 loc) · 6.71 KB
/
vq_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import json
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import models.vqvae as vqvae
import utils.losses as losses
import options.option_vq as option_vq
import utils.utils_model as utils_model
from dataset import dataset_VQ, dataset_TM_eval
import utils.eval_trans as eval_trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
from utils.word_vectorizer import WordVectorizer
from tqdm import tqdm
from exit.utils import load_vqvae_from_MMM, init_save_folder, load_last_vqvae, set_seed, seed_worker
from models.vqvae_sep import VQVAE_SEP
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
import numpy as np
from torch.utils.data._utils.collate import default_collate
def collate_fn(batch):
batch.sort(key=lambda x: x[3], reverse=True)
return default_collate(batch)
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
for param_group in optimizer.param_groups:
param_group["lr"] = current_lr
return optimizer, current_lr
##### ---- Exp dirs ---- #####
args = option_vq.get_args_parser()
torch.manual_seed(args.seed)
##### ---- DDP ---- #####
ddp = args.ddp
if ddp:
world_size = args.world_size
ngpus_per_node = torch.cuda.device_count()
local_rank = int(os.environ.get("SLURM_LOCALID"))
rank = int(os.environ.get("SLURM_NODEID")) * ngpus_per_node + local_rank
torch.cuda.set_device(local_rank)
device = f'cuda:{local_rank}'
print(20*'-----')
print('ngpus_per_node: ', ngpus_per_node)
print('From Rank: {}, ==> Initializing Process Group...'.format(rank))
dist.init_process_group(backend=args.dist_backend, init_method=args.init_method, world_size=args.world_size, rank=rank)
print("process group ready")
print(f"From rank {rank} making model...")
print(20*'-----')
master_process = rank == 0 # this process will do logging, checkpointing etc.
else:
# vanilla, non-DDP run
rank = 0
local_rank = 0
world_size = 1
master_process = True
device = args.device
args.rank = rank
args.local_rank = local_rank
args.world_size = world_size
args.device = device
args.master_process = master_process
args.batch_size = args.total_batch_size // world_size
########## ------------- Seed -----------##############
set_seed(args.seed)
########## ------------- DIRS -----------##############
if master_process:
args.out_dir = os.path.join(args.out_dir, f'vq', 'eval') # /{args.exp_name}
# os.makedirs(args.out_dir, exist_ok = True)
init_save_folder(args)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir, args=args)
writer = SummaryWriter(args.out_dir)
if master_process:
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
args.logger = logger
args.writer = writer
w_vectorizer = WordVectorizer('./glove', 'our_vab')
if args.dataname == 'kit' :
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
args.nb_joints = 21
else:
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
args.nb_joints = 22
logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')
wrapper_opt = get_opt(dataset_opt_path, device)
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
val_dataset = dataset_TM_eval.T2MDataset(args.dataname, True,
32,
w_vectorizer,
unit_length=2**args.down_t,
args=args)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=32,
shuffle=True,
num_workers=args.num_workers,
collate_fn=collate_fn,
drop_last=True,
pin_memory=args.pin_memory)
if master_process:
logger.info(f"len valid dataset {len(val_dataset)}")
logger.info(f"len valid loader {len(val_loader)}")
##### ---- Network ---- #####
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate,
args.vq_act,
args.vq_norm)
net.eval()
net.to(local_rank)
if master_process:
n = sum([p.numel() for k, p in net.named_parameters()])
logger.info(f"Number of transformer parameters: {n/1e6} M")
if args.resume_pth :
logger.info('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
try:
net.load_state_dict(ckpt['net'], strict=True)
del ckpt
except:
sd = {}
for k, v in ckpt['net'].items():
new_k = k.split('module.')[-1]
sd[k] = v
net.load_state_dict(sd, strict=True)
del sd
del ckpt
##### ------ warm-up ------- #####
fid = []
div = []
top1 = []
top2 = []
top3 = []
matching = []
repeat_time = 10
for i in range(repeat_time):
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching \
= eval_trans.evaluation_vqvae(
args.out_dir, val_loader, net, 0, best_fid=1000, best_iter=0,\
best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100,
eval_wrapper=eval_wrapper, args=args)
fid.append(best_fid)
div.append(best_div)
top1.append(best_top1)
top2.append(best_top2)
top3.append(best_top3)
matching.append(best_matching)
logger.info('final result:')
logger.info(f'fid: {sum(fid)/repeat_time}')
logger.info(f'div: {sum(div)/repeat_time}')
logger.info(f'top1: {sum(top1)/repeat_time}')
logger.info(f'top2: {sum(top2)/repeat_time}')
logger.info(f'top3: {sum(top3)/repeat_time}')
logger.info(f'matching: {sum(matching)/repeat_time}')
fid = np.array(fid)
div = np.array(div)
top1 = np.array(top1)
top2 = np.array(top2)
top3 = np.array(top3)
matching = np.array(matching)
msg_final = f"FID. {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}"
logger.info(msg_final)