-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathemotion_recogniser.py
97 lines (77 loc) · 2.55 KB
/
emotion_recogniser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import cv2
#from detectfaces import get_faces
from keras.models import load_model
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, BatchNormalization
from keras.layers import Conv2D, MaxPooling2D, Activation
from keras import backend as K
import matplotlib.pyplot as plt
img_rows, img_cols = 48, 48
face_cascade = cv2.CascadeClassifier('saved_model/haarcascade_frontalface_default.xml')
modelFile = "saved_model/opencv_face_detector_uint8.pb"
configFile = "saved_model/opencv_face_detector.pbtxt"
# 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral
emotion = ['Angry', "Disgust", 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
font = cv2.FONT_HERSHEY_SIMPLEX
model = []
print('Loading Models...')
print('0/3')
for i in range(2):
m = load_model('saved_model/' + 'cnn'+str(i)+'.h5')
print(str(i+1) + '/3')
model.append(m)
m = load_model('saved_model/ensemble.h5')
model.append(m)
print('3/3')
print("Loading Complete!")
def predict(x):
x_rev = np.flip(x, 1)
x = x.astype('float32')
x_rev = x_rev.astype('float32')
x /= 255
x_rev /= 255
p = np.zeros((1, 14))
p[:,0:7] = model[0].predict(x.reshape(1,48,48,1))
p[:,7:14] = model[1].predict(x_rev.reshape(1,48,48,1))
pre = model[2].predict(p)
return pre
cap = cv2.VideoCapture(0)
if not cap.isOpened():
cap.open()
def get_faces(img, method='haar'):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = []
#if (method == 'dnn'):
#faces_detected = dnn_faces(img, 0.5)
if (method == 'haar'):
faces_detected = face_cascade.detectMultiScale(gray, 1.3, 5)
for i, (x,y,w,h) in enumerate(faces_detected):
my = int(y + h/2)
mx = int(x + w/2)
if h<w:
c = int(h/2)
else:
c = int(w/2)
face = gray[my-c:my+c, mx-c:mx+c]
try:
face_48 = cv2.resize(face,(48, 48), interpolation = cv2.INTER_CUBIC)
faces.append((y, x + w, face_48))
except:
pass
return faces
while(True):
ret, img = cap.read()
#faces = get_faces(img, method='dnn')
faces = get_faces(img, method='haar')
for i, (y,x,face) in enumerate(faces):
pre = predict(face)
k = np.argmax(pre)
txt = emotion[k] + ' [' + str(int(pre[0,k]*100)) + '%]'
cv2.putText(img, txt, (x, y), font, 1.0,(0,255,0),2,cv2.LINE_AA)
# cv2.imshow(str(i), face)
cv2.imshow('Camera', img)
if cv2.waitKey(20) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()