-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiments.py
253 lines (230 loc) · 11 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import numpy as np
import test_simulator
from Simulator import Simulator
import os
from tqdm.contrib.concurrent import process_map
from analysis import *
from random import randint, seed
from itertools import repeat
import plotly.figure_factory as ff
from plotly.subplots import make_subplots
from math import sqrt
def read_file(file_name):
experiments = []
nr_experiments = 0
with open(file_name, mode='r') as csv_file:
lines = csv_file.read().splitlines()
for line in lines:
if len(line) == 0:
continue
elif line[0] == '#':
experiments.append({'name': line[1:], 'params': {}, 'players': [], 'changed_keys': {}})
read_ind = 1
nr_experiments = nr_experiments + 1
nr_players = 0
elif read_ind == 1:
param_keys = line.split(', ')
read_ind = read_ind + 1
elif read_ind == 2:
param_values = line.split(', ')
assert len(param_keys)==len(param_values), f"Missing values in parameters of experiment {nr_experiments}"
for key_i in range(len(param_keys)):
if param_values[key_i][0] == '[' and param_values[key_i][-1] == ']':
experiments[-1]['params'][param_keys[key_i]] = param_values[key_i][1:-1].split(',')
else:
experiments[-1]['params'][param_keys[key_i]] = param_values[key_i]
read_ind = read_ind + 1
elif read_ind == 3:
read_ind = 0
keys = line.split(', ')
nr_keys = len(keys)
else:
values = line.split(', ')
assert len(values)==nr_keys, f"Missing values in player {nr_players} of experiment {nr_experiments}"
params = {}
for i in range(nr_keys):
params[keys[i]] = values[i]
params['id'] = nr_players
experiments[-1]['players'].append(params)
nr_players = nr_players + 1
return experiments
def expand_players(experiments):
for exp_i in range(len(experiments)):
keys = list(experiments[exp_i]['players'][0].keys())
for pl_i in range(len(experiments[exp_i]['players'])):
for key_i in range(len(keys)):
param = experiments[exp_i]['players'][pl_i][keys[key_i]]
if isinstance(param, str) and (';' in param or ':' in param):
expanded_exp = []
if ':' in param:
values = param.split(':')
else:
start, end, step = param.split(';')
values = np.arange(float(start), float(end)+float(step), float(step))
for value in values:
temp_exp = experiments[exp_i].copy()
temp_exp['players'] = experiments[exp_i]['players'].copy()
temp_exp['players'][pl_i] = experiments[exp_i]['players'][pl_i].copy()
if not pl_i in temp_exp['changed_keys']:
temp_exp['changed_keys'][pl_i] = []
if not keys[key_i] in temp_exp['changed_keys'][pl_i]:
temp_exp['changed_keys'][pl_i].append(keys[key_i])
temp_exp['players'][pl_i][keys[key_i]] = value
expanded_exp.append(temp_exp)
if exp_i != 0:
expanded_exp = experiments[:exp_i] + expanded_exp
if exp_i != len(experiments)-1:
expanded_exp = expanded_exp + experiments[exp_i+1:]
return expand_players(expanded_exp)
return experiments
def convert_values(experiments):
for exp in experiments:
for param in exp['params']:
if param in ['T', 'R', 'S', 'P']:
exp['params'][param] = float(exp['params'][param])
elif param in ['grid_x', 'grid_y', 'epochs', 'runs']:
exp['params'][param] = int(float(exp['params'][param]))
elif param in ['infinite']:
exp['params'][param] = exp['params'][param] == 'True'
elif param in ['snapshots']:
exp['params'][param] = [int(val) for val in exp['params'][param]]
else:
assert False, f"Parameter {key} not implemented for experiments"
for player in exp['players']:
for key in player.keys():
if key in ['strat']:
continue
elif key in ['id', 'nr']:
player[key] = int(float(player[key]))
elif key in ['imit_prob', 'migrate_prob', 'omega']:
player[key] = float(player[key])
else:
assert False, f"Key {key} not implemented for experiments"
#add changed keys to name
player_changes = []
for p_i in range(len(exp['players'])):
changes = []
if p_i in exp['changed_keys']:
for key in exp['changed_keys'][p_i]:
changes.append(f'{key}-{exp["players"][p_i][key]}')
player_changes.append(f"p-{p_i} {' '.join(changes)}")
exp['name'] = exp['name'] + ''.join([f'({change})' for change in player_changes])
return experiments
def class_name(player):
return f"{player['strat']}_imitP-{player['imit_prob']}_migrateP-{player['migrate_prob']}_omega-{player['omega']}"
def run_experiment(experiment):
player_cfgs = []
classes = []
strategies = []
num_players = 0
for player in experiment['players']:
player_class = class_name(player)
for i in range(player['nr']):
player_cfgs.append(test_simulator.generate_player(player['strat'], player_class, 1, 3, player['imit_prob'], player['migrate_prob'], player['omega']))
num_players = num_players + player['nr']
if player_class not in classes:
classes.append(player_class)
if player['strat'] not in strategies:
strategies.append(player['strat'])
nr_results = 5
nr_runs = experiment['params']['runs']
results = [[] for i in range(nr_results)]
#comment this line if you want to use more specific classes than just strategies
classes = strategies
for r in range(nr_runs):
sim = Simulator(experiment['params']['grid_x'], experiment['params']['grid_y'], num_players, 1, 3, player_cfgs, experiment['params']['T'], experiment['params']['R'], experiment['params']['S'], experiment['params']['P'], experiment['params']['infinite'], rand_seed=randint(0,13371337))
sim.simulate(experiment['params']['epochs'], visualize=False)
state = sim.get_state()
map_history = sim.map_history
t, df_dpc, fig_dpc = defection_per_class_over_time(state, classes, visualize=False)
results[0].append(df_dpc)
t2, df_cd, fig_cd = class_distribution_over_time(sim.map_history, classes, visualize=False)
results[1].append(df_cd)
t3, df_cvc, fig_cvc = class_vs_class_over_time(state, classes, visualize=False)
results[2].append(df_cvc)
t4, df_ppc, fig_ppcot = payoff_per_class_over_time(state, classes, visualize=False)
results[3].append(df_ppc)
opt_value = experiment['params']['R']/(1-experiment['players'][0]['omega']) if experiment['params']['infinite'] else experiment['params']['R']
t5, df_poo, fig_poo = percentage_of_optimum(state, opt_value, classes, visualize=False)
results[4].append(df_poo)
poo = results[4]
averages = []
variances = []
for res in range(nr_results):
if res == 2:
lvl = [0,1]
else:
lvl = 0
data = pd.concat(results[res]).groupby(level=lvl)
averages.append(data.mean())
if nr_runs > 1:
var = data.var()
if res == 2:
var = (var[1] / (var[0]+var[1])).round(2)
if res == 4:
var = var['res']
variances.append(var)
if not os.path.exists('data'):
os.makedirs('data')
exp_dir = f"data/{experiment['name']}"
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
if nr_runs > 1:
max_vars = [values.max().max() for values in variances]
value_names = ['dpc', 'cd', 'cvc_rel', 'ppc', 'poo_res']
with open(f'{exp_dir}/max_var_dev.txt', "w") as f:
f.write('name\t\tvariance\tdeviation\n')
f.write('\n'.join([f'{value_names[i]}\t\t{round(max_vars[i],2)}\t\t{round(sqrt(max_vars[i]),2)}' for i in range(len(max_vars))]))
figs = {}
averages[0].to_csv(f'{exp_dir}/dpc.csv')
figs['dpc'] = vis_dpc(averages[0])
averages[1].to_csv(f'{exp_dir}/cd.csv')
figs['cd'] = vis_cd(averages[1])
averages[2].to_csv(f'{exp_dir}/cvc.csv')
figs['cvc'] = vis_cvc(averages[2])
averages[3].to_csv(f'{exp_dir}/ppc.csv')
figs['ppc'] = vis_ppc(averages[3])
averages[4].to_csv(f'{exp_dir}/poo.csv')
figs['poo'] = vis_poo(averages[4])
for fig in figs:
if html:
figs[fig].write_html(f'{exp_dir}/{fig}.html')
if png:
figs[fig].write_image(f'{exp_dir}/{fig}.png')
#all_grids = make_subplots(rows=1, cols=len(experiment['params']['snapshots']))
for snapshot_i in experiment['params']['snapshots']:
arr = map_history[snapshot_i-1].copy()
Strategies = {'EMPTY': 0, 'RANDOM': 1, 'DEFECT': 2, 'COOPERATE': 3,'GT': 4, 'TFT': 5, 'TFTD': 6, 'TF2T': 7}
for i in range(len(arr)):
arr[i] = Strategies[arr[i]]
grid = np.array(arr).reshape(experiment['params']['grid_x'], -1)
# colorscale = [[0, 'navy'], [1, 'plum']]
# font_colors = ['black'] #['white', 'black']
# fig = ff.create_annotated_heatmap(
# z=grid,
# annotation_text=np.array(map_history[snapshot_i-1]).reshape(experiment['params']['grid_x'], -1),
# colorscale='Phase', font_colors=font_colors,
# name=f"Epoch: {snapshot_i}",
# xgap=1.5, ygap=1.5)
# fig.update_layout(width=800, height=800, title=f"Epoch: {snapshot_i}")
#all_grids.add_trace(fig, row=1, col=experiment['params']['snapshots'].index(snapshot_i)+1)
fig = vis_grid(grid, snapshot_i)
if html:
fig.write_html(f'{exp_dir}/grid_{snapshot_i}.html')
if png:
fig.write_image(f'{exp_dir}/grid_{snapshot_i}.png')
#if html:
# all_grids.write_html(f'{exp_dir}/all_grids.html')
#if png:
# all_grids.write_image(f'{exp_dir}/all_grids.png')
seed(42)
html = True
png = True #write_image doesn't work on WSL1 -> had to set it to False :-(
if __name__ == "__main__":
experiments = read_file('experiments.csv')
experiments = expand_players(experiments)
experiments = convert_values(experiments)
if False:
for exp in experiments:
print(exp)
process_map(run_experiment, experiments) #max_workers=8