-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN_AlexNet.py
203 lines (149 loc) · 7.53 KB
/
CNN_AlexNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import pickle
import numpy as np
import torch.nn as nn
import torch.utils.data as Data
from torchvision import transforms
import torcheval.metrics
import torch
from tqdm.notebook import tqdm
from Basel_weather_neural_network import plot_training
def unpickle(file):
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
def load_dataset():
image_dic1 = unpickle(directory_path + 'data_batch_1')
image_dic2 = unpickle(directory_path + 'data_batch_2')
image_dic3 = unpickle(directory_path + 'data_batch_3')
image_dic4 = unpickle(directory_path + 'data_batch_4')
image_dic5 = unpickle(directory_path + 'data_batch_5')
return np.concatenate(
[image_dic1[b'data'], image_dic2[b'data'], image_dic3[b'data'], image_dic4[b'data'], image_dic5[b'data']],
axis=0), np.concatenate(
[image_dic1[b'labels'], image_dic2[b'labels'], image_dic3[b'labels'], image_dic4[b'labels'],
image_dic5[b'labels']], axis=0)
class MyCifar(Data.Dataset):
def __init__(self, images, labels, transform=None):
self.images = images
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.labels)
def __getitem__(self, index):
image = self.images[index]
if (self.transform):
image = self.transform(image)
label = self.labels[index]
return image, label
def transform_to_image(vector_list):
return [np.array(x).reshape((3, 32, 32)).transpose((1, 2, 0)) for x in vector_list]
def fit(num_epochs, model, criterion, optimizer, device, trainloader, testloader, sched):
# Массив суммарных ошибок сети при обучении на каждой эпохе
train_losses = []
# Массив суммарных ошибок сети при тестировании после каждой эпохи
test_losses = []
# Массив доли правильных ответов сети при тестировании после каждой эпохи
test_accuracies = []
for epoch in tqdm(range(num_epochs)):
loss_sum = 0 # суммарная ошибка сети
model = model.train() # включаем режим обучения модели
for _, (image, label) in enumerate(trainloader):
image = image.to(device)
label = label.type(torch.LongTensor)
label = label.to(device)
# после каждой эпохи градиенты необходимо обнулять
optimizer.zero_grad()
logits = model(image) # итоговые вероятности классов
loss = criterion(logits, label) # подсчёт функции ошибки
loss.backward() # пересчёт градиентов
optimizer.step() # градиентный шаг
sched.step() # меняем темп обучения
loss_sum += loss.item()
del label
del image
if (epoch % 9 == 0):
print(f'Train Epoch: {epoch + 1} | Loss: {loss_sum / len(trainloader)}')
train_losses.append(loss_sum / len(trainloader))
loss_sum = 0
precision = 0
accuracy = 0
recall = 0
model.eval() # включаем режим тестирования модели
with torch.no_grad(): # отключение градиентов
for _, (image, label) in enumerate(testloader):
image = image.to(device)
label = label.type(torch.LongTensor)
label = label.to(device)
outputs = model(image)
loss_sum += criterion(outputs, label).item()
# извлечение из полученных вероятностей наиболее вероятного класса
_, preds = torch.max(outputs, axis=-1)
accuracy += torcheval.metrics.functional.multiclass_accuracy(preds, label, num_classes=10,
average='macro')
precision += torcheval.metrics.functional.multiclass_precision(preds, label, num_classes=10,
average='macro')
recall += torcheval.metrics.functional.multiclass_recall(preds, label, num_classes=10, average='macro')
del label
del image
if (epoch % 5 == 0):
print(
f'Test Epoch: {epoch + 1} | Loss: {loss_sum / len(testloader)} | Accuracy: {accuracy / len(testloader)} | Precision: {precision / len(testloader)}')
print(
f'Recall: {recall / len(testloader)} | F-Score: {2 * recall * precision / (recall + precision) / len(testloader)}')
test_losses.append(loss_sum / len(testloader))
test_accuracies.append(accuracy / len(testloader))
return train_losses, test_losses, test_accuracies
class AlexNet(nn.Module):
def __init__(self):
super(AlexNet, self).__init__()
self.conv1 = nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=2)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2)
self.conv2 = nn.Conv2d(96, 256, kernel_size=5, padding=2)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2)
self.conv3 = nn.Conv2d(256, 384, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(384, 384, kernel_size=3, padding=1)
self.conv5 = nn.Conv2d(384, 256, kernel_size=3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2)
self.flat = nn.Flatten()
self.fc1 = nn.Linear(256 * 6 * 6, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.fc3 = nn.Linear(4096, 10)
self.drop = nn.Dropout(p=0.5)
def forward(self, x):
x = self.pool1(nn.ReLU()(self.conv1(x)))
x = self.pool2(nn.ReLU()(self.conv2(x)))
x = nn.ReLU()(self.conv3(x))
x = nn.ReLU()(self.conv4(x))
x = self.pool3(nn.ReLU()(self.conv5(x)))
x = self.flat(x)
x = self.drop(nn.ReLU()(self.fc1(x)))
x = self.drop(nn.ReLU()(self.fc2(x)))
x = self.fc3(x)
return x
directory_path = './cifar-10-batches-py/'
# размер пакета
BATCH_SIZE = 50000
images, labels = load_dataset()
label_names = unpickle('./cifar-10-batches-py/batches.meta')[b'label_names']
test_dic = unpickle('./cifar-10-batches-py/test_batch')
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# обучающая и тестовая выборка
trainset = MyCifar(transform_to_image(images), labels, transform)
testset = MyCifar(transform_to_image(test_dic[b'data']), test_dic[b'labels'], transform)
# загрузчики данных
trainloader = Data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
testloader = Data.DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True)
device = torch.device("cpu")
model = AlexNet()
model = model.to(device)
num_epochs = 30
learning_rate = 0.01
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(), weight_decay=0.0001, lr=learning_rate)
sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, learning_rate, epochs=num_epochs,
steps_per_epoch=len(trainloader))
info = fit(num_epochs, model, criterion, optimizer, device, trainloader, testloader, sched)
train_losses, test_losses, _ = info
plot_training(train_losses, test_losses)