-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_video_retrieval.py
590 lines (507 loc) · 25.8 KB
/
train_video_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
'''
Adapted from https://github.com/salesforce/BLIP
'''
import argparse
import os
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
from einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from models.blip import load_checkpoint
from models.testa_retrieval import testa_retrieval
import utils
from utils import cosine_lr_schedule
from data import create_dataset, create_sampler, create_loader
from torch.cuda.amp import autocast
from torch.cuda.amp import GradScaler
import deepspeed
import zipfile
from pprint import pformat
import wandb
from model_stats import params_count, gpu_mem_usage, get_model_stats
def get_deepspeed_config(args):
config_params = {
'train_batch_size': args.effective_batch_size,
}
use_fp16 = args.deepspeed_fp16
use_amp = not args.deepspeed_fp16 # by default, if not use deepspeed fp16, will enable deepspeed amp
if use_amp:
config_params['amp'] = {
'enabled': True,
'opt_level': f'O{args.amp_opt_level}',
}
if use_fp16:
config_params['fp16'] = {
'enabled': True,
}
gradient_clip = args.max_grad_norm
if gradient_clip:
config_params['gradient_clipping'] = gradient_clip
config_params['flops_profiler'] = {
'enabled': False,
'profile_step': 1,
'module_depth': -1,
'top_modules': 3,
'detailed': True,
}
# config_params['logging'] = {
# 'steps_per_print': 50,
# }
if hasattr(args, "zero_opt_stage") and args.zero_opt_stage > 0:
config_params['zero_optimization'] = {
'stage': args.zero_opt_stage,
}
if args.zero_opt_stage > 0:
config_params['fp16'] = {
'enabled': True
}
config_params['zero_allow_untested_optimizer'] = True
print(pformat(config_params))
return config_params
def fp32_to_fp16(inputs):
# deepspeed does not auto cast inputs.
for k, v in inputs.items():
if isinstance(v, torch.Tensor) and v.dtype == torch.float32:
v = v.to(dtype=torch.half)
inputs[k] = v
return inputs
def mixed_precision_init(args, model, optimizer):
if args.mixed_precision_method == "deepspeed":
config = get_deepspeed_config(args)
model, optimizer, _, _ = deepspeed.initialize(
config_params=config,
model=model,
optimizer=optimizer
)
'''
else:
# opt_level is O0, Apex will run as fp32
model, optimizer = amp.initialize(
model, optimizer,
enabled=True,
opt_level=f'O{args.amp_opt_level}')
if args.distributed:
model = DDP(model)
'''
return args, model, optimizer
def train(model, data_loader, optimizer, epoch, device, config, args, scaler):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('loss_vtm', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
metric_logger.add_meter('loss_vtc', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = 'Train Video Retrieval Epoch: [{}]'.format(epoch)
print_freq = 50
for i, (video, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
B, N, C, H, W = video.size()
video = video.permute(0, 2, 1, 3, 4) # (B,C,N,H,W)
video = video.to(device, non_blocking=True)
idx = idx.to(device, non_blocking=True)
if epoch > 0:
alpha = config['alpha']
else:
alpha = config['alpha'] * min(1, i / len(data_loader))
if args.mixed_precision_method == 'deepspeed':
inputs = {"video": video, 'caption': caption}
inputs = fp32_to_fp16(inputs)
video = inputs['video']
caption = inputs['caption']
loss_vtc, loss_vtm = model(video, caption, alpha, idx, bsz=B)
loss = loss_vtc + loss_vtm
elif args.mixed_precision_method == 'apex':
with autocast():
loss_vtc, loss_vtm = model(video, caption, alpha, idx, bsz=B)
loss = loss_vtc + loss_vtm
else:
loss_vtc, loss_vtm = model(video, caption, alpha, idx, bsz=B)
loss = loss_vtc + loss_vtm
if args.mixed_precision_method == 'apex':
scaler.scale(loss).backward()
if ((i + 1) % args.accumulation_steps) == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
elif args.mixed_precision_method == 'deepspeed':
model.backward(loss)
model.step()
else:
loss.backward()
if ((i + 1) % args.accumulation_steps) == 0:
optimizer.step()
optimizer.zero_grad()
metric_logger.update(loss_vtm=loss_vtm.item())
metric_logger.update(loss_vtc=loss_vtc.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if utils.is_main_process():
wandb.log({'train/loss_vtm': loss_vtm.item(), 'train/loss_vtc': loss_vtc.item(),
'train/lr': optimizer.param_groups[0]["lr"]})
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluation(model, data_loader, device, config, args):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Evaluation:'
print('Computing features for evaluation...')
start_time = time.time()
texts = data_loader.dataset.text
num_text = len(texts)
text_bs = 256
text_ids = []
text_embeds = []
text_atts = []
for i in range(0, num_text, text_bs):
text = texts[i: min(num_text, i + text_bs)]
text_input = model.tokenizer(text, padding='max_length', truncation=True, max_length=config['max_words'], return_tensors="pt").to(device)
text_output = model.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, mode='text')
text_embed = F.normalize(model.text_proj(text_output.last_hidden_state[:, 0, :]))
text_embeds.append(text_embed)
text_ids.append(text_input.input_ids)
text_atts.append(text_input.attention_mask)
text_embeds = torch.cat(text_embeds, dim=0)
text_ids = torch.cat(text_ids, dim=0)
text_atts = torch.cat(text_atts, dim=0)
text_ids[:, 0] = model.tokenizer.enc_token_id
video_feats = []
video_embeds = []
for video, vid_id in data_loader:
video = video.permute(0, 2, 1, 3, 4) # (B,C,N,H,W)
video = video.to(device, non_blocking=True)
video_feat = model.visual_encoder(video) # [bsz*N, (image_size/patch_size)^2+1, 768]
video_embed = model.vision_proj(torch.mean(video_feat, dim=1))
video_embed = F.normalize(video_embed, dim=-1)
if args.low_resource_eval:
video_feat = video_feat.half()
video_feats.append(video_feat.cpu())
video_embeds.append(video_embed)
video_feats = torch.cat(video_feats, dim=0)
video_embeds = torch.cat(video_embeds, dim=0)
sims_matrix = video_embeds @ text_embeds.t()
score_matrix_v2t = torch.full((len(data_loader.dataset.video), len(texts)), -100.0).to(device)
num_tasks = utils.get_world_size()
rank = utils.get_rank()
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, 'V2T ' + header)):
if args.k_test_batch_size >= config['k_test']:
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
encoder_output = video_feats[start + i].repeat(config['k_test'], 1, 1).to(device)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
if args.mixed_precision_method == 'apex':
with autocast():
output = model.text_encoder(text_ids[topk_idx],
attention_mask=text_atts[topk_idx],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
else:
output = model.text_encoder(text_ids[topk_idx],
attention_mask=text_atts[topk_idx],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_v2t[start + i, topk_idx] = score + topk_sim
else:
for j in range(0, config['k_test'], args.k_test_batch_size):
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
topk_sim = topk_sim[j:j + args.k_test_batch_size]
topk_idx = topk_idx[j:j + args.k_test_batch_size]
encoder_output = video_feats[start + i].repeat(len(topk_idx), 1, 1).to(device)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device)
if args.mixed_precision_method == 'apex':
with autocast():
output = model.text_encoder(text_ids[topk_idx],
attention_mask=text_atts[topk_idx],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
else:
output = model.text_encoder(text_ids[topk_idx],
attention_mask=text_atts[topk_idx],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_v2t[start + i, topk_idx] = score + topk_sim
sims_matrix = sims_matrix.t()
score_matrix_t2v = torch.full((len(texts), len(data_loader.dataset.video)), -100.0).to(device)
step = sims_matrix.size(0) // num_tasks + 1
start = rank * step
end = min(sims_matrix.size(0), start + step)
for i, sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, 'T2I ' + header)):
if args.k_test_batch_size >= config['k_test']:
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
topk_idx = topk_idx.cpu()
encoder_output = video_feats[topk_idx].to(device, non_blocking=True)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device, non_blocking=True)
if args.mixed_precision_method == 'apex':
with autocast():
output = model.text_encoder(text_ids[start + i].repeat(config['k_test'], 1),
attention_mask=text_atts[start + i].repeat(config['k_test'], 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
else:
output = model.text_encoder(text_ids[start + i].repeat(config['k_test'], 1),
attention_mask=text_atts[start + i].repeat(config['k_test'], 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_t2v[start + i, topk_idx] = score + topk_sim
else:
for j in range(0, config['k_test'], args.k_test_batch_size):
topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
topk_sim = topk_sim[j:j + args.k_test_batch_size]
topk_idx = topk_idx[j:j + args.k_test_batch_size]
topk_idx = topk_idx.cpu()
encoder_output = video_feats[topk_idx].to(device, non_blocking=True)
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to(device, non_blocking=True)
if args.mixed_precision_method == 'apex':
with autocast():
output = model.text_encoder(text_ids[start + i].repeat(len(topk_idx), 1),
attention_mask=text_atts[start + i].repeat(len(topk_idx), 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
else:
output = model.text_encoder(text_ids[start + i].repeat(len(topk_idx), 1),
attention_mask=text_atts[start + i].repeat(len(topk_idx), 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_t2v[start + i, topk_idx] = score + topk_sim
if args.distributed:
dist.barrier()
torch.distributed.all_reduce(score_matrix_v2t, op=torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(score_matrix_t2v, op=torch.distributed.ReduceOp.SUM)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Evaluation time {}'.format(total_time_str))
return score_matrix_v2t.cpu().numpy(), score_matrix_t2v.cpu().numpy()
@torch.no_grad()
def vtm_eval(scores_v2t, scores_t2v, txt2vid, vid2txt):
# Videos->Text
ranks = np.zeros(scores_v2t.shape[0])
for index, score in enumerate(scores_v2t):
inds = np.argsort(score)[::-1]
# Score
rank = 1e20
for i in vid2txt[index]:
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
# Compute metrics
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
# Text->Videos
ranks = np.zeros(scores_t2v.shape[0])
for index, score in enumerate(scores_t2v):
inds = np.argsort(score)[::-1]
ranks[index] = np.where(inds == txt2vid[index])[0][0]
# Compute metrics
ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
tr_mean = (tr1 + tr5 + tr10) / 3
ir_mean = (ir1 + ir5 + ir10) / 3
r_mean = (tr_mean + ir_mean) / 2
eval_result = {'txt_r1': tr1,
'txt_r5': tr5,
'txt_r10': tr10,
'txt_r_mean': tr_mean,
'vid_r1': ir1,
'vid_r5': ir5,
'vid_r10': ir10,
'vid_r_mean': ir_mean,
'r_mean': r_mean}
return eval_result
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
scaler = None
#### Mixed precision
if args.mixed_precision_method == "apex":
fp16_trainning = f"apex O{args.amp_opt_level}"
scaler = GradScaler()
elif args.mixed_precision_method == "deepspeed":
amp_info = '' if args.deepspeed_fp16 else f'amp, {args.amp_opt_level}'
fp16_info = '' if not args.deepspeed_fp16 else f'fp16, {args.zero_opt_stage}'
fp16_trainning = f"deepspeed, {amp_info}{fp16_info}"
else:
fp16_trainning = None
print("16-bits training: {}".format(fp16_trainning))
#### Dataset ####
print("Creating retrieval dataset")
train_dataset, val_dataset, test_dataset = create_dataset(config['dataset'], config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None, None]
else:
samplers = [None, None, None]
train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset], samplers,
batch_size=[config['batch_size_train']] + [config['batch_size_test']] * 2,
num_workers=[4, 4, 4],
is_trains=[True, False, False],
collate_fns=[None, None, None])
#### Model ####
print("Creating model")
model = testa_retrieval(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'],
vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],
queue_size=config['queue_size'], negative_all_rank=config['negative_all_rank'],
token_merging=config['token_merging'], testa_r=config['testa_r'],
merging_type=config['merging_type'],
model_cfg=config, max_words=config['max_words'])
model = model.to(device)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
if args.mixed_precision_method:
args.effective_batch_size = config['batch_size_train'] * args.num_gpus
args, model, optimizer = mixed_precision_init(args, model, optimizer)
model_without_ddp = model
if args.distributed:
if args.mixed_precision_method != 'deepspeed':
static_graph = True if config['vit_grad_ckpt'] is True else False
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], static_graph=static_graph)
model_without_ddp = model.module
if utils.is_main_process():
wandb.init(
# set the wandb project where this run will be logged
project=config['dataset'],
name=args.output_dir.split('/')[-1],
# track hyperparameters and run metadata
config=config
)
if config['vit_grad_ckpt'] is False:
visual_encoder = model_without_ddp.visual_encoder
model_stat = {'Params (M)': params_count(visual_encoder) / 1024 ** 2, 'Mem (G)': gpu_mem_usage(),
'Flops (G)': get_model_stats(visual_encoder, config, "flop", True),
'Activations (M)': get_model_stats(visual_encoder, config, "activation", True)}
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(model_stat) + "\n")
wandb.log(model_stat)
best = 0
best_epoch = 0
print("Start training")
start_time = time.time()
for epoch in range(0, config['max_epoch']):
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
train_stats = train(model, train_loader, optimizer, epoch, device, config, args, scaler)
torch.cuda.empty_cache()
score_val_v2t, score_val_t2v, = evaluation(model_without_ddp, val_loader, device, config, args)
if utils.is_main_process():
print('Validation')
val_result = vtm_eval(score_val_v2t, score_val_t2v, val_loader.dataset.txt2video, val_loader.dataset.video2txt)
print('Val result: ', val_result)
if val_result['vid_r_mean'] > best:
print('Saving current checkpoint')
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
best = val_result['vid_r_mean']
best_epoch = epoch
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'val_{k}': v for k, v in val_result.items()},
'epoch': epoch,
'best_epoch': best_epoch,
}
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
wandb.log({f'val/{k}': v for k, v in val_result.items()})
if args.evaluate:
break
dist.barrier()
torch.cuda.empty_cache()
if not args.evaluate: # load best ckpt after fine-tuning
model_without_ddp, _ = load_checkpoint(model_without_ddp, os.path.join(args.output_dir, 'checkpoint_best.pth'))
score_test_v2t, score_test_t2v = evaluation(model_without_ddp, test_loader, device, config, args)
if utils.is_main_process():
if config['dataset'] == 'retrieval_condensedmovies': # for Condensed Movies dataset submission
np.save(os.path.join(args.output_dir, 'score_test_v2t.npy'), score_test_v2t)
np.save(os.path.join(args.output_dir, 'score_test_t2v.npy'), score_test_t2v)
from pathlib import Path
sim_save_fp = Path(os.path.join(args.output_dir, 'score_test_t2v.npy'))
zipfile.ZipFile(os.path.join(args.output_dir, 'submission.zip'), mode='w').write(sim_save_fp, 'sim_matrix_test.npy')
else:
print('Test evaluation')
test_result = vtm_eval(score_test_v2t, score_test_t2v, test_loader.dataset.txt2video, test_loader.dataset.video2txt)
print('Test result: ', test_result)
log_stats = {**{f'test_{k}': v for k, v in test_result.items()},
'best_epoch': best_epoch,
}
file_name = "evaluate.txt" if args.evaluate else "log.txt"
with open(os.path.join(args.output_dir, file_name), "a") as f:
f.write(json.dumps(log_stats) + "\n")
wandb.log({f'test/{k}': v for k, v in test_result.items()})
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/retrieval_queryd.yaml')
parser.add_argument('--output_dir', default='output/Retrieval_QuerYD_zeroshot')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--max_grad_norm', type=float, default=1.0)
parser.add_argument('--adam_epsilon', type=float, default=1e-8)
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--mixed_precision_method', type=str, default=None)
parser.add_argument('--amp_opt_level', type=int, default=1)
parser.add_argument('--deepspeed_fp16', action='store_true')
parser.add_argument('--zero_opt_stage', type=int, default=1)
parser.add_argument('--num_gpus', type=int, default=8)
parser.add_argument('--sep_image', action='store_true')
parser.add_argument('--img_config', type=str)
parser.add_argument('--k_test_batch_size', type=int, default=16)
parser.add_argument('--accumulation_steps', type=int, default=1)
parser.add_argument('--low_resource_eval', action='store_true',
help='reduce the memory cost during evaluation. use it when infer on didemo or anet without TESTA')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'), default_flow_style=False)
main(args, config)