-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
385 lines (301 loc) · 12 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import os
import numpy as np
import cv2
import pandas as pd
from PIL import Image, ImageFilter
import torch
from torch.utils.data.dataset import Dataset
from torchvision import transforms
import utils
def get_list_from_filenames(file_path):
# input: relative path to .txt file with file names
# output: list of relative path names
# print(file_path)
with open(file_path) as f:
lines = f.read().splitlines()
return lines
class AFLW2000(Dataset):
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
self.data_dir = data_dir
self.transform = transform
self.img_ext = img_ext
self.annot_ext = annot_ext
filename_list = get_list_from_filenames(filename_path)
self.X_train = filename_list
self.y_train = filename_list
self.image_mode = image_mode
self.length = len(filename_list)
def __getitem__(self, index):
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
img = img.convert(self.image_mode)
mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
# Crop the face loosely
pt2d = utils.get_pt2d_from_mat(mat_path)
x_min = min(pt2d[0,:])
y_min = min(pt2d[1,:])
x_max = max(pt2d[0,:])
y_max = max(pt2d[1,:])
k = 0.20
x_min -= 2 * k * abs(x_max - x_min)
y_min -= 2 * k * abs(y_max - y_min)
x_max += 2 * k * abs(x_max - x_min)
y_max += 0.6 * k * abs(y_max - y_min)
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
# We get the pose in radians
pose = utils.get_ypr_from_mat(mat_path)
# And convert to degrees.
pitch = pose[0]# * 180 / np.pi
yaw = pose[1] #* 180 / np.pi
roll = pose[2]# * 180 / np.pi
R = utils.get_R(pitch, yaw, roll)
labels = torch.FloatTensor([yaw, pitch, roll])
if self.transform is not None:
img = self.transform(img)
return img, torch.FloatTensor(R), labels, self.X_train[index]
def __len__(self):
# 2,000
return self.length
class AFLW(Dataset):
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
self.data_dir = data_dir
self.transform = transform
self.img_ext = img_ext
self.annot_ext = annot_ext
filename_list = get_list_from_filenames(filename_path)
self.X_train = filename_list
self.y_train = filename_list
self.image_mode = image_mode
self.length = len(filename_list)
def __getitem__(self, index):
img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
img = img.convert(self.image_mode)
txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
# We get the pose in radians
annot = open(txt_path, 'r')
line = annot.readline().split(' ')
pose = [float(line[1]), float(line[2]), float(line[3])]
# And convert to degrees.
yaw = pose[0] * 180 / np.pi
pitch = pose[1] * 180 / np.pi
roll = pose[2] * 180 / np.pi
# Fix the roll in AFLW
roll *= -1
# Bin values
bins = np.array(range(-99, 102, 3))
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
cont_labels = torch.FloatTensor([yaw, pitch, roll])
if self.transform is not None:
img = self.transform(img)
return img, labels, cont_labels, self.X_train[index]
def __len__(self):
# train: 18,863
# test: 1,966
return self.length
class AFW(Dataset):
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
self.data_dir = data_dir
self.transform = transform
self.img_ext = img_ext
self.annot_ext = annot_ext
filename_list = get_list_from_filenames(filename_path)
self.X_train = filename_list
self.y_train = filename_list
self.image_mode = image_mode
self.length = len(filename_list)
def __getitem__(self, index):
txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
img_name = self.X_train[index].split('_')[0]
img = Image.open(os.path.join(self.data_dir, img_name + self.img_ext))
img = img.convert(self.image_mode)
txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
# We get the pose in degrees
annot = open(txt_path, 'r')
line = annot.readline().split(' ')
yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])]
# Crop the face loosely
k = 0.32
x1 = float(line[4])
y1 = float(line[5])
x2 = float(line[6])
y2 = float(line[7])
x1 -= 0.8 * k * abs(x2 - x1)
y1 -= 2 * k * abs(y2 - y1)
x2 += 0.8 * k * abs(x2 - x1)
y2 += 1 * k * abs(y2 - y1)
img = img.crop((int(x1), int(y1), int(x2), int(y2)))
# Bin values
bins = np.array(range(-99, 102, 3))
labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
cont_labels = torch.FloatTensor([yaw, pitch, roll])
if self.transform is not None:
img = self.transform(img)
return img, labels, cont_labels, self.X_train[index]
def __len__(self):
# Around 200
return self.length
class BIWI(Dataset):
def __init__(self, data_dir, filename_path, transform, image_mode='RGB', train_mode=True):
self.data_dir = data_dir
self.transform = transform
d = np.load(filename_path)
x_data = d['image']
y_data = d['pose']
self.X_train = x_data
self.y_train = y_data
self.image_mode = image_mode
self.train_mode = train_mode
self.length = len(x_data)
def __getitem__(self, index):
img = Image.fromarray(np.uint8(self.X_train[index]))
img = img.convert(self.image_mode)
roll = self.y_train[index][2]/180*np.pi
yaw = self.y_train[index][0]/180*np.pi
pitch = self.y_train[index][1]/180*np.pi
cont_labels = torch.FloatTensor([yaw, pitch, roll])
if self.train_mode:
# Flip?
rnd = np.random.random_sample()
if rnd < 0.5:
yaw = -yaw
roll = -roll
img = img.transpose(Image.FLIP_LEFT_RIGHT)
# Blur?
rnd = np.random.random_sample()
if rnd < 0.05:
img = img.filter(ImageFilter.BLUR)
R = utils.get_R(pitch, yaw, roll)
labels = torch.FloatTensor([yaw, pitch, roll])
if self.transform is not None:
img = self.transform(img)
# Get target tensors
cont_labels = torch.FloatTensor([yaw, pitch, roll])
return img, torch.FloatTensor(R), cont_labels, self.X_train[index]
def __len__(self):
# 15,667
return self.length
class Pose_300W_LP(Dataset):
# Head pose from 300W-LP dataset
def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
self.data_dir = data_dir
self.transform = transform
self.img_ext = img_ext
self.annot_ext = annot_ext
filename_list = get_list_from_filenames(filename_path)
self.X_train = filename_list
self.y_train = filename_list
self.image_mode = image_mode
self.length = len(filename_list)
def __getitem__(self, index):
img = Image.open(os.path.join(
self.data_dir, self.X_train[index] + self.img_ext))
img = img.convert(self.image_mode)
mat_path = os.path.join(
self.data_dir, self.y_train[index] + self.annot_ext)
# Crop the face loosely
pt2d = utils.get_pt2d_from_mat(mat_path)
x_min = min(pt2d[0, :])
y_min = min(pt2d[1, :])
x_max = max(pt2d[0, :])
y_max = max(pt2d[1, :])
# k = 0.2 to 0.40
k = np.random.random_sample() * 0.2 + 0.2
x_min -= 0.6 * k * abs(x_max - x_min)
y_min -= 2 * k * abs(y_max - y_min)
x_max += 0.6 * k * abs(x_max - x_min)
y_max += 0.6 * k * abs(y_max - y_min)
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
# We get the pose in radians
pose = utils.get_ypr_from_mat(mat_path)
# And convert to degrees.
pitch = pose[0] # * 180 / np.pi
yaw = pose[1] #* 180 / np.pi
roll = pose[2] # * 180 / np.pi
# Gray images
# Flip?
rnd = np.random.random_sample()
if rnd < 0.5:
yaw = -yaw
roll = -roll
img = img.transpose(Image.FLIP_LEFT_RIGHT)
# Blur?
rnd = np.random.random_sample()
if rnd < 0.05:
img = img.filter(ImageFilter.BLUR)
# Add gaussian noise to label
#mu, sigma = 0, 0.01
#noise = np.random.normal(mu, sigma, [3,3])
#print(noise)
# Get target tensors
R = utils.get_R(pitch, yaw, roll)#+ noise
#labels = torch.FloatTensor([temp_l_vec, temp_b_vec, temp_f_vec])
if self.transform is not None:
img = self.transform(img)
return img, torch.FloatTensor(R),[], self.X_train[index]
def __len__(self):
# 122,450
return self.length
class Pose_AGORA_CMU(Dataset):
# Head pose from AGORA or CMU dataset
def __init__(self, data_dir, filename_path, transform, image_mode='RGB'):
self.data_dir = data_dir
self.transform = transform
with open(filename_path) as f:
lines = f.read().splitlines()
filename_list, pose_list = [], []
for line in lines:
line = line.strip()
[filename, pitch, yaw, roll] = line.split(" ")
filename_list.append(os.path.join(self.data_dir, filename))
pose_list.append([float(pitch), float(yaw), float(roll)])
self.X_train = filename_list
self.y_train = pose_list
self.image_mode = image_mode
self.length = len(filename_list)
def __getitem__(self, index):
img = Image.open(self.X_train[index])
img = img.convert(self.image_mode)
pose = self.y_train[index]
[pitch, yaw, roll] = pose
# We get the pose in radians, not degrees
pitch = pitch * np.pi / 180
yaw = yaw * np.pi / 180
roll = roll * np.pi / 180
# Flip?
rnd = np.random.random_sample()
if rnd < 0.5:
yaw = -yaw
roll = -roll
img = img.transpose(Image.FLIP_LEFT_RIGHT)
# Blur?
rnd = np.random.random_sample()
if rnd < 0.05:
img = img.filter(ImageFilter.BLUR)
# Get target tensors
R = utils.get_R(pitch, yaw, roll) # + noise
labels = torch.FloatTensor([yaw, pitch, roll])
if self.transform is not None:
img = self.transform(img)
return img, torch.FloatTensor(R), labels, self.X_train[index]
def __len__(self):
return self.length
def getDataset(dataset, data_dir, filename_list, transformations, train_mode = True):
if dataset == 'Pose_300W_LP':
pose_dataset = Pose_300W_LP(
data_dir, filename_list, transformations)
elif dataset == 'AFLW2000':
pose_dataset = AFLW2000(
data_dir, filename_list, transformations)
elif dataset == 'BIWI':
pose_dataset = BIWI(
data_dir, filename_list, transformations, train_mode= train_mode)
elif dataset == 'AFLW':
pose_dataset = AFLW(
data_dir, filename_list, transformations)
elif dataset == 'AFW':
pose_dataset = AFW(
data_dir, filename_list, transformations)
elif dataset == 'CMU' or dataset == 'AGORA':
pose_dataset = Pose_AGORA_CMU(data_dir, filename_list, transformations)
else:
raise NameError('Error: not a valid dataset name')
return pose_dataset