-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSoftActorCriticBrain.py
426 lines (335 loc) · 20.2 KB
/
SoftActorCriticBrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# coding=utf-8
from typing import Tuple
import gym
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow.python import keras
from blocAndTools.buildingbloc import (
ExperimentSpec, GymPlayground, build_MLP_computation_graph, build_KERAS_MLP_computation_graph,
learning_rate_scheduler,
buil_MLP_with_initilizer,
)
from blocAndTools.rl_vocabulary import rl_name
from blocAndTools.tensorflowbloc import (
update_nn_weights, get_current_scope_variables,
get_variable_explicitely_by_graph_key_from,
)
tf_cv1 = tf.compat.v1 # shortcut
vocab = rl_name()
POLICY_LOG_STD_CAP_MAX = 2
POLICY_LOG_STD_CAP_MIN = -20
NUM_STABILITY_CORRECTION = 1e-6
USE_KERAS_LAYER = False # expose controle fro unti-test purpose
# (NICE TO HAVE) todo:investigate?? --> kernel initialization effect on agent performance:
POLICY_NN_KERNEL_INIT = None
# POLICY_NN_KERNEL_INIT = tf_cv1.initializers.he_normal()
"""
.|'''.| .'|. . | . ' ..|'''.| || . ||
||.. ' ... .||. .||. ||| .... .||. ... ... .. .|' ' ... .. ... .||. ... ....
''|||. .| '|. || || | || .| '' || .| '|. ||' '' || ||' '' || || || .| ''
. '|| || || || || .''''|. || || || || || '|. . || || || || ||
|'....|' '|..|' .||. '|.' .|. .||. '|...' '|.' '|..|' .||. ''|....' .||. .||. '|.' .||. '|...'
'|| ||
|| ... ... .. .... ... .. ...
||' || ||' '' '' .|| || || ||
|| | || .|' || || || ||
'|...' .||. '|..'|' .||. .||. ||.
+--- kban style
"""
def apply_action_bound(policy_pi: tf.Tensor, policy_pi_log_likelihood: tf.Tensor) -> Tuple[tf.Tensor, ...]:
"""
Apply a invertible squashing function (tanh) to bound the actions sampled from the policy distribution in a
finite interval (See the Soft Actor-Critic paper, appendice C)
Sum_i log(1-tanh^2(z_i))
with z_i = squashed_policy_pi
In the limit as z_i --> inf, the 1-tanh^2(z_i) goes to 0
==>
this can cause numerical instability that we mitigate by adding a small constant NUM_STABILITY_CORRECTION
:param policy_pi:
:param policy_pi_log_likelihood:
:return: squashed_policy_pi, squashed_policy_pi_log_likelihood
"""
with tf_cv1.variable_scope(vocab.squashing_fct):
# (nice to have) todo:implement --> a numericaly stable version : see p8 HW5c Sergey Levine DRL course
squashed_policy_pi = tf_cv1.tanh(policy_pi)
num_corr = tf_cv1.reduce_sum(tf_cv1.log(1 - squashed_policy_pi ** 2 + NUM_STABILITY_CORRECTION),
axis=1)
squashed_policy_pi_log_likelihood = policy_pi_log_likelihood - num_corr
return squashed_policy_pi, squashed_policy_pi_log_likelihood
def build_gaussian_policy_graph(obs_t_ph: tf.Tensor, exp_spec: ExperimentSpec,
playground: GymPlayground) -> Tuple[tf_cv1.Tensor, ...]:
"""
The ACTOR graph(aka the policy network)
A gaussian policy with state-dependent learnable mean and variance
1. Actor network phi
input: the observations collected
output:
- policy_mu layer --> the logits of each action in the action space as the mean of the Multivariate
Normal distribution
- policy_log_std layer --> the log standard deviation for the Multivariate Normal distribution
2. Policy
input: the actor network policy_mu and policy_log_std layers
output: the sampled actions in the action space + corresponding log likelihood
:return: policy_pi, policy_pi_log_likelihood, policy_mu
"""
# ::Discrete case
if isinstance(playground.env.action_space, gym.spaces.Discrete):
raise ValueError("Discrete environment are not compatible with this Soft Actor-Critic implementation")
# ::Continuous case
elif isinstance(playground.env.action_space, gym.spaces.Box):
""" ---- Assess the input shape compatibility ---- """
are_compatible = obs_t_ph.shape.as_list()[-1] == playground.OBSERVATION_SPACE.shape[0]
assert are_compatible, ("the obs_t_ph is incompatible with environment, "
"{} != {}").format(obs_t_ph.shape.as_list()[-1],
playground.OBSERVATION_SPACE.shape[0])
""" ---- Build parameter PHI as a multilayer perceptron ---- """
if USE_KERAS_LAYER:
print(':: Use Keras style Dense layer')
phi_mlp = build_KERAS_MLP_computation_graph(obs_t_ph, playground.ACTION_CHOICES,
exp_spec['phi_nn_h_layer_topo'],
hidden_layers_activation=exp_spec[
'phi_hidden_layers_activation'],
output_layers_activation=exp_spec[
'phi_hidden_layers_activation'],
name=vocab.phi)
policy_mu = keras.layers.Dense(playground.ACTION_CHOICES,
activation=exp_spec['phi_output_layers_activation'], # tf_cv1.tanh,
name=vocab.policy_mu)(phi_mlp)
policy_log_std = keras.layers.Dense(playground.ACTION_CHOICES,
activation=tf_cv1.tanh,
name=vocab.policy_log_std)(phi_mlp)
else:
print(':: Use legacy tensorFlow Dense layer')
phi_mlp = buil_MLP_with_initilizer(obs_t_ph, playground.ACTION_CHOICES,
# phi_mlp = build_MLP_computation_graph(obs_t_ph,
# playground.ACTION_CHOICES,
exp_spec['phi_nn_h_layer_topo'],
hidden_layers_activation=exp_spec[
'phi_hidden_layers_activation'],
output_layers_activation=exp_spec[
'phi_hidden_layers_activation'],
kernel_init=POLICY_NN_KERNEL_INIT,
name=vocab.phi)
policy_mu = tf_cv1.layers.dense(phi_mlp,
playground.ACTION_CHOICES,
activation=exp_spec['phi_output_layers_activation'], # tf_cv1.tanh,
# (NICE TO HAVE) todo:validate --> kernel_initializer specific to gaussian:
kernel_initializer=POLICY_NN_KERNEL_INIT,
name=vocab.policy_mu)
policy_log_std = tf_cv1.layers.dense(phi_mlp,
playground.ACTION_CHOICES,
activation=tf_cv1.tanh,
# (NICE TO HAVE) todo:validate --> kernel_initializer specific to
# gaussian:
kernel_initializer=POLICY_NN_KERNEL_INIT,
name=vocab.policy_log_std)
# # Note: clip log standard deviation as in the sac_original_paper/sac/distributions/normal.py
policy_log_std = tf_cv1.clip_by_value(policy_log_std, POLICY_LOG_STD_CAP_MIN, POLICY_LOG_STD_CAP_MAX)
# ... pi distribution investigation ............................................................................
""" ---- Build the policy for continuous space ---- """
policy_distribution = tfp.distributions.MultivariateNormalDiag(loc=policy_mu,
scale_diag=tf_cv1.exp(policy_log_std),
allow_nan_stats=False)
# .................................................................... pi distribution investigation ...(end)...
policy_pi = policy_distribution.sample(name=vocab.policy_pi)
policy_pi_log_likelihood = policy_distribution.log_prob(policy_pi,
name=vocab.policy_pi_log_likelihood)
# ::Other gym environment
else:
print("\n>>> The agent implementation does not support that environment space "
"{} yet.\n\n".format(playground.env.action_space))
raise NotImplementedError
return policy_pi, policy_pi_log_likelihood, tf_cv1.tanh(policy_mu)
def build_critic_graph_v_psi(obs_t_ph: tf.Tensor, obs_t_prime_ph: tf.Tensor, exp_spec: ExperimentSpec) -> Tuple[
tf.Tensor, ...]:
"""
Critic network psi
input: the observations 's_t' and 's_{t+1}'
output: the logits of V and frozen V
:return: v_psi, frozen_v_psi
"""
if USE_KERAS_LAYER:
mlp = build_KERAS_MLP_computation_graph
else:
mlp = buil_MLP_with_initilizer
""" ---- Build parameter '_psi' as a multilayer perceptron ---- """
v_psi = mlp(obs_t_ph, 1, exp_spec['psi_nn_h_layer_topo'],
hidden_layers_activation=exp_spec['psi_hidden_layers_activation'],
output_layers_activation=exp_spec['psi_output_layers_activation'],
kernel_init=POLICY_NN_KERNEL_INIT,
name=vocab.V_psi)
""" ---- Build frozen parameter '_psi' as a multilayer perceptron ---- """
frozen_v_psi = mlp(obs_t_prime_ph, 1, exp_spec['psi_nn_h_layer_topo'],
hidden_layers_activation=exp_spec['psi_hidden_layers_activation'],
output_layers_activation=exp_spec['psi_output_layers_activation'],
kernel_init=POLICY_NN_KERNEL_INIT,
name=vocab.frozen_V_psi)
v_psi = tf_cv1.squeeze(v_psi, axis=1)
frozen_v_psi = tf_cv1.squeeze(frozen_v_psi, axis=1)
return v_psi, frozen_v_psi
def build_critic_graph_q_theta(obs_t_ph: tf.Tensor, act_t_ph: tf.Tensor, policy_py: tf.Tensor,
exp_spec: ExperimentSpec, name: str) -> Tuple[
tf.Tensor, ...]:
"""
Critic network theta 1 & 2
input: the observations collected 's_t' & the executed action 'a_t' at timestep t
output: the logits of Q_1 according to sampled action and to the gaussian 'policy_py'
:return: Q_action, Q_policy
"""
if USE_KERAS_LAYER:
mlp = build_KERAS_MLP_computation_graph
else:
mlp = buil_MLP_with_initilizer
with tf_cv1.variable_scope(name):
inputs_obs_act = tf_cv1.concat([obs_t_ph, act_t_ph], axis=-1)
Q_action = mlp(inputs_obs_act, 1, exp_spec.theta_nn_h_layer_topo,
hidden_layers_activation=exp_spec.theta_hidden_layers_activation,
output_layers_activation=exp_spec.theta_output_layers_activation,
kernel_init=POLICY_NN_KERNEL_INIT,
name="mlp")
Q_action = tf_cv1.squeeze(Q_action, axis=1)
with tf_cv1.variable_scope(name, reuse=True):
inputs_obs_pi = tf_cv1.concat([obs_t_ph, policy_py], axis=-1)
Q_policy = mlp(inputs_obs_pi, 1, exp_spec.theta_nn_h_layer_topo,
hidden_layers_activation=exp_spec.theta_hidden_layers_activation,
output_layers_activation=exp_spec.theta_output_layers_activation,
kernel_init=POLICY_NN_KERNEL_INIT,
name="mlp")
Q_policy = tf_cv1.squeeze(Q_policy, axis=1)
return Q_action, Q_policy
def critic_v_psi_train(V_psi: tf.Tensor, Q_pi_1: tf.Tensor, Q_pi_2: tf.Tensor,
policy_pi_log_likelihood: tf.Tensor, exp_spec: ExperimentSpec, critic_lr_schedule,
critic_global_grad_step) -> Tuple[tf.Tensor, tf.Operation]:
"""
Critic v_psi loss
input:
output: the Mean Squared Error (MSE)
:param V_psi:
:param Q_pi_1: Q_theta_1 according to the reparametrized policy
:param Q_pi_2: Q_theta_2 according to the reparametrized policy
:param policy_pi_log_likelihood:
:param exp_spec:
:param critic_lr_schedule:
:param critic_global_grad_step:
:return: v_loss, v_psi_optimizer
"""
alpha = exp_spec['alpha']
""" ---- Build the Mean Square Error loss function ---- """
with tf_cv1.variable_scope(vocab.V_psi_loss):
min_q_theta = tf_cv1.minimum(Q_pi_1, Q_pi_2)
v_psi_target = tf_cv1.stop_gradient(min_q_theta - alpha * policy_pi_log_likelihood)
v_loss = 0.5 * tf.reduce_mean((v_psi_target - V_psi) ** 2)
""" ---- Fetch all tensor from V_psi and frozen_V_psi for update ---- """
# (nice to have) todo:investigate?? --> find a other way to pass the network weight between the V and frozen_V:
var_list = get_variable_explicitely_by_graph_key_from(vocab.critic_network + '/' + vocab.V_psi)
assert len(var_list) is not 0
""" ---- Critic optimizer ---- """
v_psi_optimizer = tf_cv1.train.AdamOptimizer(learning_rate=critic_lr_schedule
).minimize(loss=v_loss,
var_list=var_list,
global_step=critic_global_grad_step)
return v_loss, v_psi_optimizer
def critic_q_theta_train(frozen_v_psi: tf.Tensor, q_theta_1: tf.Tensor, q_theta_2: tf.Tensor, rew_ph: tf.Tensor,
trj_done_ph: tf.Tensor, exp_spec: ExperimentSpec,
critic_lr_schedule, critic_global_grad_step
) -> Tuple[tf_cv1.Tensor, tf_cv1.Tensor, tf_cv1.Operation, tf_cv1.Operation]:
"""
Critic q_theta {1,2} temporal difference loss
input:
output: the Mean Squared Error (MSE)
:return: q_theta_1_loss, q_theta_2_loss, q_theta_1_optimizer, q_theta_2_optimizer
"""
q_target = tf_cv1.stop_gradient(
exp_spec['reward_scaling'] * rew_ph + exp_spec.discout_factor * (1 - trj_done_ph) * frozen_v_psi)
""" ---- Build the Mean Square Error loss function ---- """
# with tf_cv1.variable_scope(vocab.critic_loss):
with tf_cv1.variable_scope(vocab.Q_theta_1_loss):
q_theta_1_loss = 0.5 * tf.reduce_mean((q_target - q_theta_1) ** 2)
with tf_cv1.variable_scope(vocab.Q_theta_2_loss):
q_theta_2_loss = 0.5 * tf.reduce_mean((q_target - q_theta_2) ** 2)
""" ---- Critic optimizer & learning rate scheduler ---- """
var_list_1 = get_variable_explicitely_by_graph_key_from(vocab.critic_network + '/' + vocab.Q_theta_1)
var_list_2 = get_variable_explicitely_by_graph_key_from(vocab.critic_network + '/' + vocab.Q_theta_2)
assert len(var_list_1) is not 0
assert len(var_list_2) is not 0
# note: global_step=critic_global_grad_step is already control by 'critic_v_psi_train' AdamOptimizer
q_theta_1_optimizer = tf_cv1.train.AdamOptimizer(learning_rate=critic_lr_schedule
).minimize(loss=q_theta_1_loss,
var_list=var_list_1,
)
q_theta_2_optimizer = tf_cv1.train.AdamOptimizer(learning_rate=critic_lr_schedule
).minimize(loss=q_theta_2_loss,
var_list=var_list_2,
)
return q_theta_1_loss, q_theta_2_loss, q_theta_1_optimizer, q_theta_2_optimizer
def actor_train(policy_pi_log_likelihood: tf.Tensor, Q_pi_1: tf.Tensor, Q_pi_2: tf.Tensor,
exp_spec: ExperimentSpec) -> Tuple[tf.Tensor, tf.Operation]:
"""
Actor loss
input:
output:
note: Hyperparameter alpha (aka Temperature, Entropy regularization coefficient )
| Control the trade-off between exploration-exploitation
| We recover the standard maximum expected return objective (the Q-fct) as alpha --> 0
:return: actor_kl_loss, actor_policy_optimizer_op
"""
alpha = exp_spec['alpha']
""" ---- Build the Kullback-Leibler divergence loss function ---- """
# ... Investigate ..................................................................................................
# (nice to have) todo:investigate?? --> check wether to use min_Q1_Q2 or Q_1.
# SAC paper talk about using min_Q1_Q2 in both V and Pi
# but no implementation use it (SpinningUp, SAC original impl, ... ):
# min_q_theta = tf_cv1.minimum(Q_pi_1, Q_pi_2)
# actor_kl_loss = tf_cv1.reduce_mean(alpha * policy_pi_log_likelihood - min_q_theta,
# name=vocab.actor_kl_loss)
actor_kl_loss = tf_cv1.reduce_mean(alpha * policy_pi_log_likelihood - Q_pi_1,
name=vocab.actor_kl_loss)
# .......................................................................................... Investigate ...(end)...
""" ---- Actor optimizer & learning rate scheduler ---- """
actor_lr_schedule, actor_global_grad_step = learning_rate_scheduler(
max_gradient_step_expected=exp_spec['max_gradient_step_expected'],
learning_rate=exp_spec.learning_rate,
lr_decay_rate=exp_spec['actor_lr_decay_rate'],
name_sufix='actor')
var_list = get_variable_explicitely_by_graph_key_from(vocab.actor_network)
assert len(var_list) is not 0
actor_policy_optimizer_op = tf_cv1.train.AdamOptimizer(learning_rate=actor_lr_schedule
).minimize(loss=actor_kl_loss,
var_list=var_list,
global_step=actor_global_grad_step,
)
return actor_kl_loss, actor_policy_optimizer_op
def update_frozen_v_psi_op(tau: float) -> tf.Operation:
"""
Utility function: fetch all V_psi & frozen_V_psi graph key and update frozen_V_psi network
:param tau: target_smoothing_coefficient
:return: the update op
"""
with tf_cv1.variable_scope(vocab.frozen_V_psi_update_ops):
frozen_v_psi_update_ops = _update_frozen_v_psi_op(tau)
return frozen_v_psi_update_ops
def init_frozen_v_psi() -> tf.Operation:
"""
Pass a exact copy of the weight of V_psi to frozen_V_psi
:return: the cloning op
"""
with tf_cv1.variable_scope(vocab.frozen_V_psi + '_init_ops'):
init_frozen_V_psi_op = update_frozen_v_psi_op(1.0)
return init_frozen_V_psi_op
def _update_frozen_v_psi_op(tau):
"""Construct the target update op
:param tau: target_smoothing_coefficient
:return: the update op
"""
v_psi_graph_key = get_variable_explicitely_by_graph_key_from(vocab.critic_network + '/' + vocab.V_psi)
frozen_v_psi_graph_key = get_variable_explicitely_by_graph_key_from(vocab.critic_network + '/' + vocab.frozen_V_psi)
assert len(v_psi_graph_key) is not 0
assert len(frozen_v_psi_graph_key) is not 0
frozen_v_psi_update_ops = update_nn_weights(v_psi_graph_key, frozen_v_psi_graph_key, tau)
return frozen_v_psi_update_ops
def critic_learning_rate_scheduler(exp_spec: ExperimentSpec):
return learning_rate_scheduler(
max_gradient_step_expected=exp_spec['max_gradient_step_expected'] * exp_spec.max_epoch,
learning_rate=exp_spec['critic_learning_rate'],
lr_decay_rate=exp_spec['critic_lr_decay_rate'],
name_sufix='critic')