Thinking in data.table

Arun Srinivasan
@arun_sriniv
Co-developer, data.table

Data analyst, OpenAnalytics
RBelgium - May 26, 2015

About
OpenAnalytics

http://www.openanalytics.eu

My first R question

R: split a data-frame, apply a function to all row-pairs in each subset f_staert = as.factor(x$start) #convert start to factor to get count

A
2
v
5

I am new to R and am trying to accomplish the following task efficiently .

| have a data.frame, x,wthcolumns: start, end, vall, val2, val3d, vald . The columns are
sorted/ordered by start .

For each start, first | have to find all the entries in x that share the same start . Because the list is
ordered, they will be consecutive. If a particular start occurs only once, then | ignore it. Then, for these

entries that have the same start, lets say for one particular start , there are 3 entries, as shown below:

entries for start=10

start end vall val2 val3 vald
19 25 8 9 L) e
10 55 15 2e9 4 9
19 30 1 8) 1

Then, | have to take 2 rows at a time and perform a fisher.test onthe 2x4 matrices of vall:4 . That
s,

rowl:row2 => fisher.test{matrix(c(8,15,9,209,0,4,8,9), nrow=2))
rowl:row3 => fisher.test{matrix(c(8,4,9,8,0,0,9,1), nrow=2))
row2:row3 => fisher.test{matrix(c(15,4,200,8,4,0,9,1), nrow=2))

The code | wrote is accomplished using for-loops , traditionally. | was wondering if this could be

vectorized or improved in anyway. /

asked May 31 '11 at 13:15
="t Arun
"L 141.2k ~ 747+ 98

tab_f_start = as.table(f_start) # convert to table to access count
o_startl = NULL
o_endl = NULL
o_start2 = NULL
o_end2 = NULL
p_val = NULL
for (i in 1:length(tab_f_start)) {
check if there are more than 1 entries with same start
if (tab_f_start[i] > 1) {
get all rows for current start
cur_entry = x[x$start == as.integer(names(tab_f_start[i])),]
loop over all combinations to obtain p-values
ctr = tab_f_start[i]
for (j in 1:(ctr-1)) {
for (k in (j+1):ctr) {
store start and end values separately
o_startl = c(o_startl, x$start[j])
o_endl = c(o_endl, x$end[j])
o_start2 = c(o_start2, x$start[k])
o_end2 = c(o_end2, x$end[k])
construct matrix
ml = c(x$vall[j], x$vali[k])
m2 = c(x$val2[j], x$val2[k])
m3 = c(x$val3[j], x$valli[k])
m4 = c(x$valda[j], x$vala[k])
m = matrix(c(m1,m2,m3,m4), nrow=2)
p_val = c(p_val, fisher.test(m))

http://stackoverflow.com/q/16152161/559784

http://stackoverflow.com/q/6188172/559784

Every question is a good question!
Feel free to interrupt.

About
data.table

https://github.com/Rdatatable/data.table
http://stackoverflow.com/tags/data.table/topusers
http://stackoverflow.com/tags/data.table/topusers

data.table vs dplyr: can one do something well the other can't or does poorly?

We need to cover at least these aspects to provide a comprehensive answer/comparison (in no
particular order of importance): Speed , Memory usage , Syntax and Features .

)

/8

My intent is to cover each one of these as clearly as possible from data.table perspective.

Note: unless explicitly mentioned otherwise, by referring to dplyr, we refer to dplyr's data.frame
interface whose internals are in C++ using Rcpp.

H < <

+200

1. Speed

Quite a few benchmarks (though mostly on grouping operations) have been added to the question
already showing data.table gets faster than dplyr as the number of groups and/or rows to group
by increase, including benchmarks by Matt on grouping from 70 million to 2 billion rows (100GB in
RAM) on 700 - 710 million groups and varying grouping columns, which also compares pandas .

data.table vs dplyr SO

http://stackoverflow.com/a/27718317/559784

data.table goals

Goal 1: Reduce programming time
(fewer function calls, less variable name repetition)

Goal 2: Reduced computing time

(fast aggregations, equi ol

1

S, rolling joins, overlapping range

joins, file reader, data cleaning, update by reference)
fread melt, dcast

Data Frames

Looking at " [.data.frame™ function
The general form is: DF[i, j] + drop

Subset rows « » Select Columns

DF[DF$code == 3L,] DF[, c(“code”, “vA”)]

code VAV

code A
3 1 6 3
3 5 10

N W R RN
v A WDN PR

What’s different in a data.table then?

" [.data.table” on the contrary, is quite feature packed
The general form is: DT[1, j, by] # + ...

¢

Take DT, subset rows using 1, then calculate j, grouped by by

R: i J by
SQL: WHERE SELECT|COMPUTE GROUP BY

Continued ...

calculates the row indices on which
>

‘ we would like to operate on

DT[i, Jj, by]
W

combining them with by provides a powerful and

flexible interface for data manipulation; even more
than apply, tapply, transform, aggregate,

ave, by, split, merge etc., combined.

v

- can select, compute, add/update/delete columns on those rows.

Overview of today’s talk

Reading
— fread
Cleaning
— melt, dcast
Analysing
— subsets (automatic indexing)
— ordering (fast radix ordering, setorder)
— Aggregations and updates
— Interval joins (foverlaps)

Reading

50 MB CSV file, 1 million rows X 6 columns

Command Run time

read.csv(“test.csv”) 30-60s

read.csv(“test.csv”, colClasses=, nrows=, ..) 10s

fread(“test.csv”) 3s

Reading

20 GB CSV file, 200 million rows X 16 columns

Command Run time

read.csv(“big.csv”, colClasses=, nrows=, ..) hours

fread(“big.csv”) 8m

Cleaning

Consider this sample data:

childl child2 child3 childl child2 child3_

sex sex sex age age age
David Angela M F NA 8 12 NA
Aaron Anita = NA NA 7 NA NA

Michael Katya F F M 5 7 15

Cleaning

How can we clean this data to get to this”

dad mom child
David Angela childl M 8
Aaron Anita childl F 7
Michael Katya childl F 5
David Angela child2 F 12
Aaron Anita child2 NA NA
Michael Katya child2 F 7
David Angela child3 NA NA
Aaron Anita child3 NA NA
Michael Katya child3 M 15

Cleaning

old (and convoluted) way:

DT.m = melt(DT, id = 1:2)

DT.m[, child := gsub(" .*$", "", variable)]

DT.m[, variable := gsub(".* ", "", variable)]

dcast(DT.m, dad + mom + child ~ variable, value.var = "value")

WHY ARE WE COMBINING ALL COLUMNS TOGETHER HERE ONLY TO SPLIT THEM AGAIN?

This is both not straightforward and extremely inefficient!!

melt should be able to combine multiple columns together

(v1.9.5 does it right)

vars = lapply(c("sex$", "age$"), grep, names(DT), value=TRUE)

DT.m1 = melt(DT, measure = vars, variable.name = "child",
value.name = c("sex", "age"))

setattr(DT.ml$child, 'levels', gsub("_.*$", "", vars[[1L]])) II|UStrat|On
DT.ml

use na.rm=TRUE directly

tidyr vs data.table benchmark

http://r.789695.n4.nabble.com/data-frame-data-driven-column-selections-that-vary-by-row-tt4705260.html#a4705414

Subsets

How can we get all rows where child == “child1”?
DT.m1[child == “child1”]

dad mom child

David Angela childl M 8
Aaron Anita childl F 7
Michael Katya childl F 5
David Angela child2 F 12
Aaron Anita child2 NA NA
Michael Katya child2 F 7
David Angela child3 NA NA
Aaron Anita child3 NA NA
Michael Katya child3 M 15

Automatic indexing

Build indices automatically on the first run
Allows for fast binary search based subsets on subsequent runs

Possible because of fast radix ordering in data.tables

lllustration

Ordering

data.table implements fast radix ordering for integers, doubles and
characters

DT[order(..)] is optimised to use internal fast radix ordering

setorder() is even more memory efficient way to reorder data.tables (and
also data.frames since 1.9.5+)

lllustration
setorder() benchmark

http://stackoverflow.com/a/29331287/559784

Aggregations

How many kids do each family have?
DT.m1[lis.na(sex), .N, by = .(dad, mom)]

Note: The entire subset is not materialised here after computing
expression in ‘I’

If we already removed NAs using na.rm=TRUE argument in melt, then

DT.m2|, .N, by = .(dad, mom)]

Aggregations
Get the sex of oldest kid for each family

DT.m2|[, sex[which.max(age)], by = .(dad, mom)]

Name the result column as ‘oldest sex’

DT.m2|, .(oldest_sex = sex[which.max(age)]), by = .(dad, mom)]

Add / update column

Add a new column with the sex of oldest child for each family

DT.m2|, oldest_sex := sex[which.max(age)], by = .(dad, mom)]

.= takes a character vector of column names (or indices) on the
left and a list of values on the right.

It updates the data.table by reference (in-place). We don’t need
todoDT.m <- ..

When LHS contains only one column the “* is optional (for
convenience). Similarly RHS need not be wrapped with 1ist().

Overlapping range joins - new feature

Which ranges from Query overlap with Subject?

12 15 10 16
10 16 NA | NA
41 50
>0 | 35 NA NA
7 g
Query Subject

foverlaps(query, subject, type="within”)

