Success with OpenMP
In R package data.table

JSM Vancouver, 2 Aug 2018
Matt Dowle

Abstract

Matt will share his positive experience of parallelizing C code
using OpenMP in the R package data.table. He will cover several
tasks that are complete and released to CRAN: fwrite, fread,
sort and shuffle. The focus will be on general technigues used
(e.g. OpenMP's ordered clause) that may be applied by a wider
audience to their fields. The examples will be from R but the
same principles apply in Python, Julia and any
environment where OpenMP can be used at C level.
Problems overcome will include: how to halt with error (not
thread safe) from a thread, the ability to reorder a character
column in parallel even though the R API function

SET STRING ELT() is not thread safe, how to reason with and
tackle the fact that even on a server with 32 CPUs we still
typically only have 32K of L1D, a mere 16 cache lines per thread.
The talk will contain OpenMP example code and one or two
references to Ulrich Drepper's 2007 paper: "what every
programmer should know about memory".

.al 2
Intelligence

Motivation

running

2 -

L
=
(=}
o
~
(=]

.al

Intelligence

R

data.table

Python
datatable

OpenMP

multithreaded single process

No attempt

to distribute across

multiple machines, and no plan to

Automatically multithreaded
No user-code changes needed

IN-memory

mmap’d disk

.al
Intelligence

Why OpenMP?

2014 useR! Conference
Met Norman Matloff
He suggested it

Chapters 4&5: OpenMP

.al
Intelligence

The R Series

Parallel
Computing for

Data Science

With Examples in
R, C++ and CUDA

Norman Matloff

Why not OpenMP?

1. Consensus: “R’s C API Is not thread-safe”
2. Consensus: “R’s C API is not thread-safe!”

3. Consensus: “R’s C API is not thread-safel!tttii”

Matloff 2014: “maybe some things are possible, Matt”
He encouraged me to try.

.al 6
Intelligence

(1) Multithreaded csv write: fwrite()

Initial contribution by Otto Seiskari in March 2016
| parallelized it using OpenMP

Can read R memory multithreaded (*)

v1.9.8 on CRAN Nov 2016
https://blog.h20.a1/2016/04/fast-csv-writing-for-r/

(*) recent caveat altrep

.al 7
Intelligence

https://blog.h2o.ai/2016/04/fast-csv-writing-for-r/

Laptop SSD SEerver
4core/16gb 32core/256gb
10m rows 100m rows

Time Size RamDisk HDD Size
Sec GB Time Time GB

fwrite(DT, "fwrite.csv") CSV 2 9 61
write Teather(DV, "“feather.bin") bin 5 P
save(DT,file="savel.Rdata",compress=F) bin 11 90 137
save(DT,file="save2.Rdata",compress=T) bin 70 647 679
write.csv(DT,"write.csv.csv", **) csv 63 749 824
readr::write csv(DT,"write csv.csv") csv 132 1997 1571

[**] row.names=F,quote=

.ai
Intelligence

#pragma omp parallel num_threads (nth)

{
char *myBuff = malloc (1MB);
#pragma omp for ordered schedule (dynamic)
for (int64_t start=0; start<nrow; start+=rowsPerBatch) ({
if (failed) continue;
char *ch = myBuff;
for (int64_t row=start; row<(start+rowsPerBatch); row++) ({
for (int col=0; col<args.ncol; col++) {
(funs[whichFun[col]]) (columns[col], row, &ch);
*ch++ = sep;
}
ch——;
*ch++ = ‘\n’;
}
#pragma omp ordered
write (f, myBuff, (int) (ch-myBuff));
}
}
.al

Intelligence

(2) multithreaded sort: fsort()

« data.table’s radix sort is based on work by :
Pierre Terdiman, 2000
Michael Herf, 2001
e.g. IEEE754 bit twiddle and more

* Forwards radix for parallelism

.al
Intelligence

10

Sort random doubles on EC2 X1 (2TB RAM)
Intel Thread Building Blocks and data.table::fsort()

900

50
Minutes TBB
Run 1 and 2
25
data.table
Run 1 and 2
0
1 100 200 300 400 500 600 700 800
Size of input vector (GB) j
al 100 billion 8-byte doubles 1

Intelligence

// f£ind minULL and maxULL in parallel

int maxBit = log(maxULL-minULL) / log(2);

int shift = maxBit - 16; // 2 byte MSB

#pragma omp parallel for num_threads (nth)
for (int batch=0; batch<nBatch; batch++) {
for (int j=0; j<batchSize; j++) {

countMatrix[batch, (*(*ULL)x — minULL) >> shift]++;

// cumulate countMatrix columnwise
// gather by MSB then descend in cache

// do biggest bins first to minimize waiting for last bin

.al
Intelligence

12

(3) multithreaded shuffle: setkey()

find the order, then reorder all the columns by
that order

each thread does one column
Int and double are just memory moves ...
... and so are CHARSXP in this special case (!)

.al 13
Intelligence

Conclusion

OpenMP is great fun

Speedups exceeded expectations
Work in progress

Demo on EC2

github.com/Rdatatable/data.table (R)
github.com/h2o0ai/datatable (Python)

.al 14
Intelligence

	Fast automatic indexing with data.table, for beginners
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

