-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
165 lines (123 loc) · 4.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 12 12:11:09 2019
@author: RayKMAllen
"""
import math
import numpy as np
import sys
from tensorflow.keras.layers import Lambda
import tensorflow as tf
from types import ModuleType, FunctionType
from gc import get_referents
import operator as op
from functools import reduce
from PIL import Image
from IPython.display import display
from matplotlib import pyplot as plt
def rpy_to_unit_vector(rpy):
#Converts roll, pitch, yaw triple to vector on the sphere.
#Note roll is actually irrelevant.
(roll, pitch, yaw) = rpy
x = math.cos(yaw)*math.cos(pitch)
y = math.sin(yaw)*math.cos(pitch)
z = math.sin(pitch)
return (x, y, z)
def get_random_eraser(p=0.5, s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3, v_l=0, v_h=255, pixel_level=False):
def eraser(input_img):
img_h, img_w, img_c = input_img.shape
p_1 = np.random.rand()
if p_1 > p:
return input_img
while True:
s = np.random.uniform(s_l, s_h) * img_h * img_w
r = np.random.uniform(r_1, r_2)
w = int(np.sqrt(s / r))
h = int(np.sqrt(s * r))
left = np.random.randint(0, img_w)
top = np.random.randint(0, img_h)
if left + w <= img_w and top + h <= img_h:
break
if pixel_level:
c = np.random.uniform(v_l, v_h, (h, w, img_c))
else:
c = np.random.uniform(v_l, v_h)
input_img[top:top + h, left:left + w, :] = c
return input_img
return eraser
class Logger(object):
def __init__(self):
self.stdout = sys.stdout
self.terminal = sys.stdout
self.log = open("log.txt", "a")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
def __del__(self):
sys.stdout = self.stdout
self.log.close()
def kerasize(tf_func, input, *args, **kwargs):
return Lambda(lambda x: tf_func(x, *args, **kwargs))(input)
def create_weight(name, shape, initializer=None, trainable=True, seed=None):
if initializer is None:
initializer = tf.contrib.keras.initializers.he_normal(seed=seed)
return tf.get_variable(name, shape, initializer=initializer, trainable=trainable)
def getsize(obj):
"""sum size of object & members."""
# Custom objects know their class.
# Function objects seem to know way too much, including modules.
# Exclude modules as well.
BLACKLIST = type, ModuleType, FunctionType
if isinstance(obj, BLACKLIST):
raise TypeError('getsize() does not take argument of type: '+ str(type(obj)))
seen_ids = set()
size = 0
objects = [obj]
while objects:
need_referents = []
for obj in objects:
try:
if not isinstance(obj, BLACKLIST) and id(obj) not in seen_ids:
seen_ids.add(id(obj))
size += sys.getsizeof(obj)
need_referents.append(obj)
except ReferenceError:
pass
objects = get_referents(*need_referents)
return size
def ncr(n, r):
r = min(r, n-r)
numer = reduce(op.mul, range(n, n-r, -1), 1)
denom = reduce(op.mul, range(1, r+1), 1)
return int(numer / denom)
def excavate(dct, lst):
for k, v in dct.items():
if type(v) is dict:
excavate(v, lst)
else:
lst.append(v)
return lst
def yawpitchtomaae(yaw, pitch):
phi = np.deg2rad(yaw)
theta = np.deg2rad(pitch)
xrad = np.cos(phi)*np.cos(theta)
return np.rad2deg(np.arccos(xrad))
def nnelu(inpt):
#Computes the Non-Negative Exponential Linear Unit
return tf.add(tf.constant(1, dtype=tf.float32), tf.nn.elu(inpt))
def imshow(ary):
im = ary*255
im = im.astype(np.uint8)
display(Image.fromarray(im))
def vecshow(vec):
plt.figure(figsize=(1,1))
ax = plt.axes()
ax.arrow(0, 0, -vec[1], -vec[0], head_width=0.1, head_length=0.1, fc='black', ec='black')
ax.arrow(0, 0, -vec[1], vec[2], head_width=0.1, head_length=0.1, fc='blue', ec='blue')
ax.set_yticklabels([])
ax.set_xticklabels([])
plt.xlim(-1,1)
plt.ylim(-1,1)
plt.show()