-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathefficientnet_lite.py
239 lines (196 loc) · 9.08 KB
/
efficientnet_lite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import math
import torch
from torch import nn
import torch.functional as F
efficientnet_lite_params = {
# width_coefficient, depth_coefficient, image_size, dropout_rate
'efficientnet_lite0': [1.0, 1.0, 224, 0.2],
'efficientnet_lite1': [1.0, 1.1, 240, 0.2],
'efficientnet_lite2': [1.1, 1.2, 260, 0.3],
'efficientnet_lite3': [1.2, 1.4, 280, 0.3],
'efficientnet_lite4': [1.4, 1.8, 300, 0.3],
}
def round_filters(filters, multiplier, divisor=8, min_width=None):
"""Calculate and round number of filters based on width multiplier."""
if not multiplier:
return filters
filters *= multiplier
min_width = min_width or divisor
new_filters = max(min_width, int(filters + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_filters < 0.9 * filters:
new_filters += divisor
return int(new_filters)
def round_repeats(repeats, multiplier):
"""Round number of filters based on depth multiplier."""
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
def drop_connect(x, drop_connect_rate, training):
if not training:
return x
keep_prob = 1.0 - drop_connect_rate
batch_size = x.shape[0]
random_tensor = keep_prob
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=x.dtype, device=x.device)
binary_mask = torch.floor(random_tensor)
x = (x / keep_prob) * binary_mask
return x
class MBConvBlock(nn.Module):
def __init__(self, inp, final_oup, k, s, expand_ratio, se_ratio, has_se=False):
super(MBConvBlock, self).__init__()
self._momentum = 0.01
self._epsilon = 1e-3
self.input_filters = inp
self.output_filters = final_oup
self.stride = s
self.expand_ratio = expand_ratio
self.has_se = has_se
self.id_skip = True # skip connection and drop connect
# Expansion phase
oup = inp * expand_ratio # number of output channels
if expand_ratio != 1:
self._expand_conv = nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._momentum, eps=self._epsilon)
# Depthwise convolution phase
self._depthwise_conv = nn.Conv2d(
in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
kernel_size=k, padding=(k - 1) // 2, stride=s, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._momentum, eps=self._epsilon)
# Squeeze and Excitation layer, if desired
if self.has_se:
num_squeezed_channels = max(1, int(inp * se_ratio))
self._se_reduce = nn.Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = nn.Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Output phase
self._project_conv = nn.Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._momentum, eps=self._epsilon)
self._relu = nn.ReLU6(inplace=True)
def forward(self, x, drop_connect_rate=None):
"""
:param x: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
identity = x
if self.expand_ratio != 1:
x = self._relu(self._bn0(self._expand_conv(x)))
x = self._relu(self._bn1(self._depthwise_conv(x)))
# Squeeze and Excitation
if self.has_se:
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_expand(self._relu(self._se_reduce(x_squeezed)))
x = torch.sigmoid(x_squeezed) * x
x = self._bn2(self._project_conv(x))
# Skip connection and drop connect
if self.id_skip and self.stride == 1 and self.input_filters == self.output_filters:
if drop_connect_rate:
x = drop_connect(x, drop_connect_rate, training=self.training)
x += identity # skip connection
return x
class EfficientNetLite(nn.Module):
def __init__(self, widthi_multiplier, depth_multiplier, num_classes, drop_connect_rate, dropout_rate):
super(EfficientNetLite, self).__init__()
# Batch norm parameters
momentum = 0.01
epsilon = 1e-3
self.drop_connect_rate = drop_connect_rate
mb_block_settings = [
#repeat|kernal_size|stride|expand|input|output|se_ratio
[1, 3, 1, 1, 32, 16, 0.25],
[2, 3, 2, 6, 16, 24, 0.25],
[2, 5, 2, 6, 24, 40, 0.25],
[3, 3, 2, 6, 40, 80, 0.25],
[3, 5, 1, 6, 80, 112, 0.25],
[4, 5, 2, 6, 112, 192, 0.25],
[1, 3, 1, 6, 192, 320, 0.25]
]
# Stem
out_channels = 32
self.stem = nn.Sequential(
nn.Conv2d(3, out_channels, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(num_features=out_channels, momentum=momentum, eps=epsilon),
nn.ReLU6(inplace=True),
)
# Build blocks
self.blocks = nn.ModuleList([])
for i, stage_setting in enumerate(mb_block_settings):
stage = nn.ModuleList([])
num_repeat, kernal_size, stride, expand_ratio, input_filters, output_filters, se_ratio = stage_setting
# Update block input and output filters based on width multiplier.
input_filters = input_filters if i == 0 else round_filters(input_filters, widthi_multiplier)
output_filters = round_filters(output_filters, widthi_multiplier)
num_repeat= num_repeat if i == 0 or i == len(mb_block_settings) - 1 else round_repeats(num_repeat, depth_multiplier)
# The first block needs to take care of stride and filter size increase.
stage.append(MBConvBlock(input_filters, output_filters, kernal_size, stride, expand_ratio, se_ratio, has_se=False))
if num_repeat > 1:
input_filters = output_filters
stride = 1
for _ in range(num_repeat - 1):
stage.append(MBConvBlock(input_filters, output_filters, kernal_size, stride, expand_ratio, se_ratio, has_se=False))
self.blocks.append(stage)
# Head
in_channels = round_filters(mb_block_settings[-1][5], widthi_multiplier)
out_channels = 1280
self.head = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(num_features=out_channels, momentum=momentum, eps=epsilon),
nn.ReLU6(inplace=True),
)
self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1))
if dropout_rate > 0:
self.dropout = nn.Dropout(dropout_rate)
else:
self.dropout = None
self.fc = torch.nn.Linear(out_channels, num_classes)
self._initialize_weights()
def forward(self, x):
x = self.stem(x)
idx = 0
for stage in self.blocks:
for block in stage:
drop_connect_rate = self.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / len(self.blocks)
x = block(x, drop_connect_rate)
idx +=1
x = self.head(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
if self.dropout is not None:
x = self.dropout(x)
x = self.fc(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 1.0/float(n))
m.bias.data.zero_()
def load_pretrain(self, path):
state_dict = torch.load(path)
self.load_state_dict(state_dict, strict=True)
def build_efficientnet_lite(name, num_classes):
width_coefficient, depth_coefficient, _, dropout_rate = efficientnet_lite_params[name]
model = EfficientNetLite(width_coefficient, depth_coefficient, num_classes, 0.2, dropout_rate)
return model
if __name__ == '__main__':
model_name = 'efficientnet_lite0'
model = build_efficientnet_lite(model_name, 1000)
model.eval()
from utils.flops_counter import get_model_complexity_info
wh = efficientnet_lite_params[model_name][2]
input_shape = (3, wh, wh)
flops, params = get_model_complexity_info(model, input_shape)
split_line = '=' * 30
print(f'{split_line}\nInput shape: {input_shape}\n'
f'Flops: {flops}\nParams: {params}\n{split_line}')