forked from XiandaGuo/OpenStereo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_kitti.py
131 lines (106 loc) · 4.75 KB
/
test_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# @Time : 2023/10/8 15:01
# @Author : zhangchenming
import argparse
import os
import sys
import torch
import datetime
import numpy as np
import glob
from torch.utils.data import DataLoader
from PIL import Image
from easydict import EasyDict
from pathlib import Path
sys.path.insert(0, './')
from stereo.utils import common_utils
from stereo.datasets.dataset_template import DatasetTemplate
from stereo.modeling import build_trainer
from stereo.utils.common_utils import load_params_from_file
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--workers', type=int, default=0, help='number of workers for dataloader')
parser.add_argument('--pin_memory', action='store_true', default=False, help='data loader pin memory')
parser.add_argument('--pretrained_model', type=str, default=None, help='pretrained_model')
parser.add_argument('--data_cfg_file', type=str, default='cfgs/kitti_eval_test.yaml')
args = parser.parse_args()
args.output_dir = str(Path(args.pretrained_model).parent.parent)
args.kitti_result_dir = os.path.join(args.output_dir, 'disp_0')
if not os.path.exists(args.kitti_result_dir):
os.makedirs(args.kitti_result_dir)
yaml_files = glob.glob(os.path.join(args.output_dir, '*.yaml'), recursive=False)
args.cfg_file = yaml_files[0]
yaml_config = common_utils.config_loader(args.cfg_file)
cfgs = EasyDict(yaml_config)
return args, cfgs
class KittiTestDataset(DatasetTemplate):
def __init__(self, data_info, data_cfg, mode='testing'):
super().__init__(data_info, data_cfg, mode)
def __getitem__(self, idx):
item = self.data_list[idx]
full_paths = [os.path.join(self.root, x) for x in item]
left_img_path, right_img_path = full_paths[:2]
left_img = np.array(Image.open(left_img_path).convert('RGB'), dtype=np.float32)
right_img = np.array(Image.open(right_img_path).convert('RGB'), dtype=np.float32)
sample = {
'left': left_img,
'right': right_img,
'name': left_img_path.split('/')[-1],
}
sample = self.transform(sample)
return sample
@torch.no_grad()
def main():
args, cfgs = parse_config()
local_rank = 0
global_rank = 0
torch.cuda.set_device(local_rank)
# logger
log_file = os.path.join(args.output_dir, 'testkitti_%s.log' % datetime.datetime.now().strftime('%Y%m%d-%H%M%S'))
logger = common_utils.create_logger(log_file, rank=local_rank)
# log args and cfgs
for key, val in vars(args).items():
logger.info('{:16} {}'.format(key, val))
common_utils.log_configs(cfgs, logger=logger)
data_yaml_config = common_utils.config_loader(args.data_cfg_file)
data_cfgs = EasyDict(data_yaml_config)
logger.info('')
logger.info('~~~~~~~~~~~~~~~~~~~~ EVAL DATASET INFO ~~~~~~~~~~~~~~~~~~~~')
common_utils.log_configs(data_cfgs.DATA_CONFIG, logger=logger)
data_info = data_cfgs.DATA_CONFIG.DATA_INFOS[0]
kitti_test_dataset = KittiTestDataset(data_info, data_cfgs.DATA_CONFIG)
kitti_test_loader = DataLoader(dataset=kitti_test_dataset,
batch_size=1,
shuffle=False,
num_workers=args.workers,
pin_memory=args.pin_memory)
logger.info('Total samples for eval dataset: %d' % (len(kitti_test_dataset)))
# model
model = build_trainer(args, cfgs, local_rank, global_rank, logger, None).model.cuda()
# load pretrained model
if args.pretrained_model is not None:
if not os.path.isfile(args.pretrained_model):
raise FileNotFoundError
logger.info('Loading parameters from checkpoint %s' % args.pretrained_model)
load_params_from_file(model, args.pretrained_model, device='cuda:%d' % local_rank,
dist_mode=False, logger=logger, strict=False)
model.eval()
for i, data in enumerate(kitti_test_loader):
for k, v in data.items():
data[k] = v.to(local_rank) if torch.is_tensor(v) else v
with torch.cuda.amp.autocast(enabled=cfgs.OPTIMIZATION.AMP):
model_pred = model(data)
# infer
disp_pred = model_pred['disp_pred'].squeeze(1)
pad_top, pad_right, _, _ = data['pad']
disp_pred = disp_pred[:, pad_top:, :-pad_right]
# save to file
img = disp_pred.squeeze(0).cpu().numpy()
img = (img * 256).astype('uint16')
img = Image.fromarray(img)
name = data['name'][0]
img.save(os.path.join(args.kitti_result_dir, name))
message = 'Iter:{:>4d}/{}'.format(i, len(kitti_test_loader))
logger.info(message)
logger.info(args.kitti_result_dir)
if __name__ == '__main__':
main()