-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence_generator.py
500 lines (438 loc) · 23.6 KB
/
sequence_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import numpy as np
import random
from utils import drawing
from qa_agents import graph_agent
#import graph_agent
import constants
from utils import game_util
#import game_util
#from mcs import cover_floor
import cover_floor
from cover_floor import *
import math
import time
#from navigation.bounding_box_navigator import BoundingBoxNavigator, SHOW_ANIMATION
#from navigation.visibility_road_map import ObstaclePolygon
from navigation import bounding_box_navigator
#import navigation
from navigation.visibility_road_map import ObstaclePolygon
import matplotlib.pyplot as pl
import machine_common_sense
class SequenceGenerator(object):
def __init__(self, sess,env):
self.agent = graph_agent.GraphAgent(sess,env, reuse=True)
self.game_state = self.agent.game_state
self.action_util = self.game_state.action_util
self.planner_prob = 0.5
self.scene_num = 0
self.count = -1
self.scene_name = None
self.nav =bounding_box_navigator.BoundingBoxNavigator()
#if isinstance(self.nav, BoundingBoxNavigator):
# self.env.add_obstacle_func = self.nav.add_obstacle_from_step_output
def generate_episode(self):
self.count += 1
self.states = []
self.debug_images = []
planning = random.random() < self.planner_prob
while len(self.states) == 0:
if self.count % 50000 == 0:
#self.scene_name = 'FloorPlan%d' % random.choice(constants.SCENE_NUMBERS)
#self.scene_name = 'FloorPlan%d' % 6#random.choice(constants.SCENE_NUMBERS)
self.scene_name = 'transferral_data'
print('New episode. Scene %s' % self.scene_name)
self.agent.reset(self.scene_name)
else:
self.agent.reset()
#self.agent.reset()
print ("reset done in sequence generator")
label = self.agent.get_label()
pose = game_util.get_pose(self.game_state.event)[:3]
if constants.DRAWING:
patch = self.game_state.graph.get_graph_patch(pose)[0]
self.debug_images.append({
'color': self.game_state.s_t,
'label': np.flipud(label),
'patch': np.flipud(patch),
'label_memory': np.minimum(np.flipud(self.agent.gt_graph.memory.copy()), 2),
'state_image': self.game_state.draw_state().copy(),
'memory_map': np.minimum(np.flipud(self.game_state.graph.memory.copy()), 10),
'pose_indicator': np.flipud(self.agent.pose_indicator),
'detections': self.game_state.detection_image if constants.OBJECT_DETECTION else None,
'weight': 1,
'possible_label': (1 if self.game_state.graph.memory[
self.game_state.end_point[1] - self.game_state.graph.yMin,
self.game_state.end_point[0] - self.game_state.graph.xMin, 0] == 1
else self.game_state.is_possible_end_point),
'possible_pred': self.agent.is_possible,
})
self.states.append({
'color': self.game_state.s_t,
'pose': self.agent.gt_graph.get_shifted_pose(self.agent.pose)[:3],
'label': label,
'action': np.zeros(self.action_util.num_actions),
'pose_indicator': self.agent.pose_indicator,
'weight': 1,
#'possible_label': (1 if self.game_state.graph.memory[
# self.game_state.end_point[1] - self.game_state.graph.yMin,
# self.game_state.end_point[0] - self.game_state.graph.xMin, 0] == 1
# else self.game_state.is_possible_end_point),
})
optimal_plan, optimal_path = self.agent.gt_graph.get_shortest_path(
pose, self.game_state.end_point)
if planning:
plan, path = self.agent.get_plan()
else:
plan = optimal_plan
path = optimal_path
#print ("optimal path planning done", path, plan)
num_iters = 0
seen_terminal = False
while ((not seen_terminal) and len(plan) != 0 and
self.agent.is_possible >= constants.POSSIBLE_THRESH):
num_iters += 1
print ("In the while loop of executing the plan")
if constants.DEBUG:
print('num iters', num_iters, 'max', constants.MAX_EPISODE_LENGTH)
if num_iters > constants.MAX_EPISODE_LENGTH:
print('Path length too long in scene',
self.scene_name, 'goal_position', self.game_state.end_point,
'pose', pose, 'plan', plan)
plan = []
break
action_vec = np.zeros(self.action_util.num_actions)
if len(plan) > 0:
action = plan[0]
#print ("action to take" , action)
self.agent.step(action)
action_vec[self.action_util.action_dict_to_ind(action)] = 1
pose = game_util.get_pose(self.game_state.event)[:3]
optimal_plan, optimal_path = self.agent.gt_graph.get_shortest_path(
pose, self.game_state.end_point)
if planning:
plan, path = self.agent.get_plan()
else:
plan = optimal_plan
path = optimal_path
label = self.agent.get_label()
self.states.append({
'color': self.game_state.s_t,
'pose': self.agent.gt_graph.get_shifted_pose(self.agent.pose)[:3],
'label': label,
'action': action_vec,
'pose_indicator': self.agent.pose_indicator,
'weight': 1,
'possible_label': (1 if self.game_state.graph.memory[
self.game_state.end_point[1] - self.game_state.graph.yMin,
self.game_state.end_point[0] - self.game_state.graph.xMin, 0] == 1
else self.game_state.is_possible_end_point),
})
#print ("self.states ", self.states)
seen_terminal = seen_terminal or int(len(optimal_plan) == 0)
if self.states[-1]['label'].shape != (constants.STEPS_AHEAD, constants.STEPS_AHEAD):
self.states = []
print('Label is wrong size scene', self.scene_name, 'pose', pose)
break
if constants.DRAWING:
patch = self.game_state.graph.get_graph_patch(pose)[0]
self.debug_images.append({
'color': self.game_state.s_t,
'label': np.flipud(label),
'patch': np.flipud(patch),
'label_memory': np.minimum(np.flipud(self.agent.gt_graph.memory.copy()), 2),
'state_image': self.game_state.draw_state().copy(),
'pose_indicator': np.flipud(self.agent.pose_indicator),
'detections': self.game_state.detection_image if constants.OBJECT_DETECTION else None,
'memory_map': np.minimum(np.flipud(self.game_state.graph.memory.copy()), 10),
'possible_label': (1 if self.game_state.graph.memory[
self.game_state.end_point[1] - self.game_state.graph.yMin,
self.game_state.end_point[0] - self.game_state.graph.xMin, 0] == 1
else self.game_state.is_possible_end_point),
'possible_pred': self.agent.is_possible,
})
break
self.bounds = [self.game_state.graph.xMin, self.game_state.graph.yMin,
self.game_state.graph.xMax - self.game_state.graph.xMin + 1,
self.game_state.graph.yMax - self.game_state.graph.yMin + 1]
goal_pose = np.array([self.game_state.end_point[0] - self.game_state.graph.xMin,
self.game_state.end_point[1] - self.game_state.graph.yMin],
dtype=np.int32)[:2]
return (self.states, self.bounds, goal_pose)
def explore_3d_scene(self,config_filename):
number_actions = 0
success_distance = 0.3
self.scene_name = 'transferral_data'
#print('New episode. Scene %s' % self.scene_name)
self.agent.reset(self.scene_name,config_filename = config_filename)
self.event = self.game_state.event
pose = game_util.get_pose(self.game_state.event)[:3]
self.nav.add_obstacle_from_step_output(self.event)
#plan, path = self.agent.gt_graph.get_shortest_path(
# pose, self.game_state.end_point)
#print ("optimal path planning done", path, plan)
num_iters = 0
exploration_routine = []
exploration_routine = cover_floor.flood_fill(0,0, cover_floor.check_validity)
#print (exploration_routine, len(exploration_routine))
self.graph = graph_2d()
pose = game_util.get_pose(self.game_state.event)[:3]
#unexplored = get_unseen(self.graph.graph)
#print (len(unexplored))
#print (unexplored)
#self.event = self.game_state.event
#visible_points = get_visible_points(pose[0],pose[1],pose[2],self.event.camera_field_of_view,self.event.camera_clipping_planes[1] )
#print ("visible points = " , visible_points)
#print (len(visible_points))
#number_visible_points = points_visible_from_position(exploration_routine[10][0],exploration_routine[10][1], self.event.camera_field_of_view,self.event.camera_clipping_planes[1] )
#print ("number of visible points = ", number_visible_points)
#update_seen(self.graph.graph,pose[0],pose[1],pose[2],self.game_state.event)
unexplored = get_unseen(self.graph.graph)
print (len(unexplored))
#print (unexplored)
#return
explore_point(self.event.position['x'],self.event.position['z'], self.graph.graph,self.agent , 42.5, self.nav.scene_obstacles_dict)
unexplored = get_unseen(self.graph.graph)
print (len(unexplored))
while ( len(unexplored) > 35 ) :
start_time = time.time()
print ("before next best point calculation")
max_visible = 0
max_visible_position = []
start_time = time.time()
print (exploration_routine)
for elem in exploration_routine:
#number_visible_points = points_visible_from_position(exploration_routine[1][0],exploration_routine[1][1], self.event.camera_field_of_view,self.event.camera_clipping_planes[1] )
#number_visible_points = points_visible_from_position(self.event.position['x'],self.event.position['z'],self.event.camera_field_of_view,100,self.nav.scene_obstacles_dict,self.graph.graph )
new_visible_pts = points_visible_from_position(elem[0]*constants.AGENT_STEP_SIZE, elem[1]*constants.AGENT_STEP_SIZE, self.event.camera_field_of_view,100,self.nav.scene_obstacles_dict,self.graph.graph )
#if max_visible < number_visible_points/math.sqrt((pose[0]-elem[0])**2 + (pose[1]-elem[1])**2):
if max_visible < new_visible_pts: #and abs(max_visible_points[-1][0] - elem[0]) > 2 and :
max_visible_position.append(elem)
#points_visible(elem)
end_time = time.time()
print (max_visible_position)
print ("time taken to select next position" , end_time-start_time)
if len(max_visible_position) == 0 :
return number_actions
new_end_point = [0]*3
new_end_point[0] = max_visible_position[-1][0]
new_end_point[1] = max_visible_position[-1][1]
new_end_point[2] = pose[2]
exploration_routine.remove(max_visible_position[-1])
print ("New goal selected : ", new_end_point)
number_actions=self.nav.go_to_goal(new_end_point,self.agent,success_distance,self.graph.graph,True)
explore_point(new_end_point[0], new_end_point[1], self.graph.graph, self.agent, 42.5,
self.nav.scene_obstacles_dict)
'''
while len(plan) > 0:
action = plan[0]
#print ("action to take" , action)
number_actions += 1
self.agent.step(action)
self.event = self.game_state.event
plan = plan[1:]
path.pop()
pose = game_util.get_pose(self.game_state.event)[:3]
#update_seen_points(pose)
update_seen(self.graph.graph,pose[0],pose[1],pose[2],self.game_state.event)
#print ("pose_reached =" , pose)
'''
#self.agent = explore_point(pose[0],pose[1], self.graph.graph, self.agent)
'''
flag = 0
object_id_to_search = ""
for key,value in self.agent.game_state.discovered_explored.items():
for key_2,value_2 in value.items():
if key_2 == 0:# and key not in self.unexplored_objects:
#self.unexplored_objects[key] = value
graph_pos_x = math.floor(value_2['x']/constants.AGENT_STEP_SIZE)
graph_pos_z = math.floor(value_2['z']/constants.AGENT_STEP_SIZE)
if math.sqrt((abs(pose[0] -graph_pos_x))**2+(abs(pose[1]-graph_pos_z))**2) < 10:
print ("objects nearby to explore ")
flag = 1
optimal_plan, optimal_path = self.agent.gt_graph.get_shortest_path(
pose, (graph_pos_x,graph_pos_z,pose[2]))
object_id_to_search = key
plan = optimal_plan
path = optimal_path
break
if flag == 1 :
break
while len(plan) > 0:
action = plan[0]
self.agent.step(action)
number_actions += 1
self.event = self.game_state.event
plan = plan[1:]
path.pop()
pose = game_util.get_pose(self.game_state.event)[:3]
#print ("pose_reached while going to object=" , pose)
if flag == 1:
action = {"action":"OpenObject", "objectId":object_id_to_search}
#action = "OpenObject, objectId=%s" % object_id_to_search
self.agent.step(action)
number_actions += 1
self.event = self.game_state.event
print ("return status of open object aciton:",self.agent.game_state.event.return_status)
print ("agent pose : ", pose, ", object location", graph_pos_x,graph_pos_z)
#while (self.agent.event.return_status != "SUCCESSFUL" ) or trials < 10 :
# trials += 1
'''
#plan, path = self.agent.gt_graph.get_shortest_path(
# pose, tuple(new_end_point))
#print ("optimal path planning done", path, plan)
unexplored = get_unseen(self.graph.graph)
print (len(unexplored))
end_time = time.time()
print ("Time taken for 1 loop run = ", end_time - start_time)
return number_actions
def explore_scene(self,config_filename):
self.scene_name = 'transferral_data'
#print('New episode. Scene %s' % self.scene_name)
self.agent.reset(self.scene_name,config_filename = config_filename)
self.states = []
planning = random.random() < self.planner_prob
#print ("reset done in sequence generator")
label = self.agent.get_label()
pose = game_util.get_pose(self.game_state.event)[:3]
optimal_plan, optimal_path = self.agent.gt_graph.get_shortest_path(
pose, self.game_state.end_point)
plan = optimal_plan
path = optimal_path
print ("optimal path planning done", path, plan)
num_iters = 0
seen_terminal = False
exploration_routine = []
exploration_routine = cover_floor.flood_fill(0,0, cover_floor.check_validity)
print (exploration_routine, len(exploration_routine))
while ((not seen_terminal) and len(plan) != 0 and
self.agent.is_possible >= constants.POSSIBLE_THRESH):
num_iters += 1
#print ("In the while loop of executing the plan")
action_vec = np.zeros(self.action_util.num_actions)
while len(plan) > 0:
action = plan[0]
#print ("action to take" , action)
self.event = self.agent.step(action)
action_vec[self.action_util.action_dict_to_ind(action)] = 1
#plan.pop()
#print(plan)
plan = plan[1:]
path.pop()
pose = game_util.get_pose(self.game_state.event)[:3]
print ("pose_reached =" , pose)
#explore_objects()
flag = 0
object_id_to_search = ""
for key,value in self.agent.game_state.discovered_explored.items():
for key_2,value_2 in value.items():
if key_2 == 0:# and key not in self.unexplored_objects:
#self.unexplored_objects[key] = value
graph_pos_x = math.floor(value_2['x']/constants.AGENT_STEP_SIZE)
graph_pos_z = math.floor(value_2['z']/constants.AGENT_STEP_SIZE)
if math.sqrt((abs(pose[0] -graph_pos_x))**2+(abs(pose[1]-graph_pos_z))**2) < 10:
print ("objects nearby to explore ")
flag = 1
optimal_plan, optimal_path = self.agent.gt_graph.get_shortest_path(
pose, (graph_pos_x,graph_pos_z,pose[2]))
object_id_to_search = key
plan = optimal_plan
path = optimal_path
break
if flag == 1 :
break
while len(plan) > 0:
action = plan[0]
#print ("action to take" , action)
self.event = self.agent.step(action)
action_vec[self.action_util.action_dict_to_ind(action)] = 1
#plan.pop()
#print(plan)
plan = plan[1:]
path.pop()
pose = game_util.get_pose(self.game_state.event)[:3]
print ("pose_reached while going to object=" , pose)
if flag == 1:
#action = {"action":"OpenObject", "objectId":object_id_to_search}
action = "OpenObject, objectId:%s" % object_id_to_search
self.event = self.agent.step(action)
print ("return status of open object aciton:",self.agent.game_state.event.return_status)
'''
calculate_object_graph_position()
for key,value in self.unexplored_objects.items():
for key_2,value_2 in value.items():
graph_pos_x = math.floor(value['x']/constants.AGENT_STEP_SIZE)
graph_pos_z = math.floor(value['z']/constants.AGENT_STEP_SIZE)
if math.sqrt((abs(pose[0] -graph_pos_x))**2+(abs(pose[1]-graph_pos_z))**2):
optimal_plan, optimal_path = self.agent.gt_graph.get_shortest_path(
pose, tuple(graph_pos_x,graph_pos,pose[2]))
'''
#print ("done going to first end point")
#print (exploration_routine, len(exploration_routine))
new_end_point = [0]*3
if len(exploration_routine) > 0 :
new_end_point_data = exploration_routine.pop()
else :
break
#newend_point[0] = new_end_point[0]
#self.game_state.end_point[1] = new_end_point[1]
#self.game_state.end_point[2] = self.game_state[2]
new_end_point[0] = new_end_point_data[0]
new_end_point[1] = new_end_point_data[1]
new_end_point[2] = self.game_state.end_point[2]
#print ("new starting point = ", pose)
#print ("new ending point = ", tuple(new_end_point))
optimal_plan, optimal_path = self.agent.gt_graph.get_shortest_path(
#pose, self.game_state.end_point)
pose, tuple(new_end_point))
#if planning:
# print ("new plannning")
# plan, path = self.agent.get_plan()
#else:
# print ("not new plannning")
plan = optimal_plan
path = optimal_path
print ("optimal path planning done", path, plan)
label = self.agent.get_label()
#print ("self.states ", self.states)
#seen_terminal = seen_terminal or int(len(optimal_plan) == 0)
#self.agent.game_state.env.end_scene('', 0.0)
self.bounds = [self.game_state.graph.xMin, self.game_state.graph.yMin,
self.game_state.graph.xMax - self.game_state.graph.xMin + 1,
self.game_state.graph.yMax - self.game_state.graph.yMin + 1]
goal_pose = np.array([self.game_state.end_point[0] - self.game_state.graph.xMin,
self.game_state.end_point[1] - self.game_state.graph.yMin],
dtype=np.int32)[:2]
return (self.states, self.bounds, goal_pose)
if __name__ == '__main__':
from networks.free_space_network import FreeSpaceNetwork
from utils import tf_util
import tensorflow as tf
sess = tf_util.Session()
with tf.variable_scope('nav_global_network'):
network = FreeSpaceNetwork(constants.GRU_SIZE, 1, 1)
network.create_net()
sess.run(tf.global_variables_initializer())
start_it = tf_util.restore_from_dir(sess, constants.CHECKPOINT_DIR)
import cv2
sequence_generator = SequenceGenerator(sess)
sequence_generator.planner_prob = 1
counter = 0
while True:
states, bounds, goal_pose = sequence_generator.generate_episode()
images = sequence_generator.debug_images
for im_dict in images:
counter += 1
gt_map = (2 - im_dict['label_memory'][:,:,0])
image_list = [
im_dict['detections'] if constants.OBJECT_DETECTION else im_dict['color'],
im_dict['state_image'],
im_dict['memory_map'][:,:,0],
gt_map + np.argmax(im_dict['memory_map'][:,:,1:constants.NUM_RECEPTACLES + 2], axis=2),
gt_map + np.argmax(im_dict['memory_map'][:,:,constants.NUM_RECEPTACLES + 2:], axis=2),
]
titles = ['color', 'state', 'occupied', 'label receptacles', 'label objects']
print('possible pred', im_dict['possible_pred'])
image = drawing.subplot(image_list, 2, 2, constants.SCREEN_WIDTH, constants.SCREEN_HEIGHT,
titles=titles)
cv2.imshow('image', image[:,:,::-1])
cv2.waitKey(0)