-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnn_softmax.py
136 lines (123 loc) · 4.49 KB
/
dnn_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import matplotlib.pyplot as plt
import math
def initialize_parameters(layer_dims):
parameters={}
L=len(layer_dims)
np.random.seed(1)
for l in range(1,L):
parameters["W"+str(l)]=np.random.randn(layer_dims[l],layer_dims[l-1])/np.sqrt(layer_dims[l-1])
parameters["b"+str(l)]=np.zeros((layer_dims[l],1))
return parameters
def relu(Z):
A=np.maximum(0,Z)
cache=Z
return A,cache
def softmax(Z):
T=np.exp(Z-np.max(Z))
S=np.sum(T,axis=0,keepdims=True)
A=T/S
cache=Z
assert(S.shape==(1,Z.shape[1]))
assert(A.shape==Z.shape)
return A,cache
def relu_backward(dA,activation_cache):
Z=activation_cache
dZ=np.array(dA,copy=True)
dZ[Z<=0]=0
return dZ
def random_minibatches(X,Y,t=64,seed=0):
np.random.seed(seed)
m=X.shape[1]
minibatches=[]
permutation=list(np.random.permutation(m))
X_shuffled=X[:,permutation]
Y_shuffled=Y[:,permutation].reshape((Y.shape[0],m))
num_complete_minibatches=math.floor(m/t)
for i in range(num_complete_minibatches):
minibatch_X=X_shuffled[:,i*t:(i+1)*t]
minibatch_Y=Y_shuffled[:,i*t:(i+1)*t]
minibatch=(minibatch_X,minibatch_Y)
minibatches.append(minibatch)
if m%t!=0:
minibatch_X=X_shuffled[:,num_complete_minibatches*t:]
minibatch_Y=Y_shuffled[:,num_complete_minibatches*t:]
minibatch=(minibatch_X,minibatch_Y)
minibatches.append(minibatch)
return minibatches
def linear_forward(A_prev,W,b):
Z=np.dot(W,A_prev)+b
cache=(A_prev,W,b)
return Z,cache
def linear_activation_forward(A_prev,W,b,activation):
Z,linear_cache=linear_forward(A_prev,W,b)
if activation=="relu": A,activation_cache=relu(Z)
elif activation=="softmax": A,activation_cache=softmax(Z)
cache=(linear_cache,activation_cache)
return A,cache
def compute_cost(AL,Y):
m=Y.shape[1]
cost=-np.sum(Y*np.log(AL))/m
return cost
def L_layer_forward(X,parameters):
L=len(parameters)//2
caches=[]
A=X
for l in range(1,L):
A_prev=A
A,current_cache=linear_activation_forward(A_prev,parameters["W"+str(l)],parameters["b"+str(l)],"relu")
caches.append(current_cache)
AL,current_cache=linear_activation_forward(A,parameters["W"+str(L)],parameters["b"+str(L)],"softmax")
caches.append(current_cache)
return AL,caches
def linear_backward(dZ,cache):
A_prev,W,b=cache
m=A_prev.shape[1]
dW=np.dot(dZ,A_prev.T)/m
db=np.sum(dZ,axis=1,keepdims=True)/m
dA_prev=np.dot(W.T,dZ)
return dA_prev,dW,db
def linear_activation_backward(dA,Y,AL,cache,activation):
linear_cache,activation_cache=cache
if activation=="relu": dZ=relu_backward(dA,activation_cache)
elif activation=="softmax": dZ=AL-Y
dA_prev,dW,db=linear_backward(dZ,linear_cache)
return dA_prev,dW,db
def L_layer_backward(AL,Y,caches):
grads={}
L=len(caches)
dA_temp,grads["dW"+str(L)],grads["db"+str(L)]=linear_activation_backward(None,Y,AL,caches[L-1],"softmax")
for l in range (L-1,0,-1):
dA_temp,grads["dW"+str(l)],grads["db"+str(l)]=linear_activation_backward(dA_temp,None,None,caches[l-1],"relu")
return grads
def update_parameters(parameters,grads,learning_rate):
L=len(parameters)//2
for l in range(1,L+1):
parameters["W"+str(l)]-=learning_rate*grads["dW"+str(l)]
parameters["b"+str(l)]-=learning_rate*grads["db"+str(l)]
return parameters
def L_layer_model(X, Y, layer_dims, t=64,learning_rate = 0.0075, num_epochs = 3000, print_cost=False):
np.random.seed(1)
parameters=initialize_parameters(layer_dims)
costs=[]
seed=10
for i in range(num_epochs):
seed=seed+1
minibatches=random_minibatches(X,Y,t,seed)
for j in range(len(minibatches)):
minibatch_X,minibatch_Y=minibatches[j]
AL,caches=L_layer_forward(X,parameters)
cost=compute_cost(AL,Y)
#print(str(cost))
grads=L_layer_backward(AL,Y,caches)
parameters=update_parameters(parameters,grads,learning_rate)
if print_cost and i % 5 == 0:
print("Cost after epoch %i: %f" % (i, cost))
if print_cost and i % 5 == 0:
costs.append(cost)
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per fives)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters