forked from sdrangan/introml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prob_mult_reg.tex
379 lines (341 loc) · 12 KB
/
prob_mult_reg.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumerate}
\usepackage{listings}
\lstloadlanguages{Python}
\usetikzlibrary{shapes,arrows}
%\usetikzlibrary{dsp,chains}
\DeclareFixedFont{\ttb}{T1}{txtt}{bx}{n}{9} % for bold
\DeclareFixedFont{\ttm}{T1}{txtt}{m}{n}{9} % for normal
% Defining colors
\usepackage{color}
\definecolor{deepblue}{rgb}{0,0,0.5}
\definecolor{deepred}{rgb}{0.6,0,0}
\definecolor{deepgreen}{rgb}{0,0.5,0}
\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\GV{Guo and Verd{\'u}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Ibf}{\mathbf{I}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\epsilonbf{{\boldsymbol \epsilon}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\phibf{{\boldsymbol \phi}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\newcommand{\tran}{^{\text{\sf T}}}
\newcommand{\herm}{^{\text{\sf H}}}
\newcommand{\bkt}[1]{{\langle #1 \rangle}}
\def\Norm{{\mathcal N}}
\newcommand{\vmult}{.}
\newcommand{\vdiv}{./}
% Python style for highlighting
\newcommand\pythonstyle{\lstset{
language=Python,
backgroundcolor=\color{backcolour},
commentstyle=\color{deepgreen},
basicstyle=\ttm,
otherkeywords={self}, % Add keywords here
keywordstyle=\ttb\color{deepblue},
emph={MyClass,__init__}, % Custom highlighting
emphstyle=\ttb\color{deepred}, % Custom highlighting style
stringstyle=\color{deepgreen},
%frame=tb, % Any extra options here
showstringspaces=false %
}}
% Python environment
\lstnewenvironment{python}[1][]
{
\pythonstyle
\lstset{#1}
}
{}
% Python for external files
\newcommand\pythonexternal[2][]{{
\pythonstyle
\lstinputlisting[#1]{#2}}}
% Python for inline
\newcommand\pycode[1]{{\pythonstyle\lstinline!#1!}}
\begin{document}
\title{Introduction to Machine Learning\\
Problems Unit 3: Multiple Linear Regression}
\author{Prof. Sundeep Rangan}
\date{}
\maketitle
\begin{enumerate}
\item An online retailer like Amazon wants to determine which products
to promote based on reviews. They only want to promote products that are likely
to sell. For each product, they have past sales as well as
reviews. The reviews have both a numeric score (from 1 to 5) and text.
\begin{enumerate}[(a)]
\item To formulate this as a machine learning problem, suggest
a target variable that the online retailer could use.
\item For the predictors of the target variable, a data scientist
suggests to combine the numeric score with frequency of occurrence
of words that convey judgement like ``bad", ``good", and ``doesn't work."
Describe a possible linear model for this relation.
\item Now, suppose that
some reviews have a numeric score from 1 to 5 and others have a score
from 1 to 10. How would change your features?
\item Now suppose the reviews have either (a) a score from 1 to 5;
(b) a rating that is simply good or bad; or (c) no numeric rating at all.
How would you change your features?
\item For the frequency of occurrence of a word such as ``good",
which variable would you suggest to use as a predictor:
(a) total number of reviews with the word ``good";
or (b) fraction of reviews with the word ``good"?
\end{enumerate}
\item Suppose we are given data:
\begin{center}
\begin{tabular}[h]{|c|c|c|c|c|} \hline
$x_{i1}$ & 0 & 0 & 1 & 1 \\ \hline
$x_{i2}$ & 0 & 1 & 0 & 1 \\ \hline
$y_i$ & 1 & 4 & 3 & 7 \\ \hline
\end{tabular}
\begin{enumerate}[(a)]
\item Write an equation for a linear model for $y$ in terms of $x_1$ and $x_2$.
\item Given the data compute the least-squares estimate for the parameters
in the model.
\end{enumerate}
\end{center}
\item Write each of the following models as transformed linear models.
That is, find a parameter vector $\betabf$ in terms of the given parameters $a_i$
and a set basis functions of functions $\phibf(\xbf)$ such that $\hat{y}=\betabf\tran\phi(\xbf)$.
Also, show how to recover the original parameters $a_i$ from the parameters $\beta_j$:
\begin{enumerate}[(a)]
\item $\hat{y} = (a_1x_1+a_2x_2)e^{-x_1-x_2}$.
\item $\hat{y} = \begin{cases}
a_1 + a_2x & \mbox{if } x < 1 \\
a_3 + a_4x & \mbox{if } x \geq 1
\end{cases}$
\item $\hat{y} = (1+a_1x_1)e^{-x_2+a_2}$.
\end{enumerate}
\item An automobile engineer wants to model the relation
between the accelerator control and the velocity of the car.
The relation may not be simple since there is a lag in depressing
the accelerator and the car actually accelerating. To determine
the relation, the engineers measures the acceleration control input $x_k$
and velocity of the car $y_k$ at time instants $k=0,1,\ldots,T-1$.
The measurements are made at some sampling rate, say once every 10~ms.
The engineer then wants to fit a model of the form
\beq \label{eq:yxfilt}
y_k = \sum_{j=1}^M a_j y_{k-j} + \sum_{j=0}^N b_j x_{k-j} + \epsilon_k,
\eeq
for coefficients $a_j$ and $b_j$.
In engineering this relation is called a \emph{linear filter} and
it statistics it is called an \emph{auto-regressive moving average (ARMA)}
model.
\begin{enumerate}[(a)]
\item Describe a vector $\betabf$ with the unknown parameters.
How many unknown parameters are there?
\item Describe the matrix $\Abf$ and target vector $\ybf$ so that we can
rewrite the model \eqref{eq:yxfilt} in matrix form,
\[
\ybf = \Abf \betabf + \epsilonbf.
\]
Your matrix $\Abf$ will have entries of $y_k$ and $x_k$ in it.
\item (Graduate students only)
Show that, for $T \gg N$ and $T \gg M$,
the coefficients of $(1/T)\Abf\tran\Abf$ and $(1/T)\Abf\tran\ybf$
can be approximately
computed from the so-called auto-correlation functions
\[
R_{xy}(\ell) = \frac{1}{T} \sum_{k=0}^{T-1} x_ky_{k+\ell}, \quad
R_{yy}(\ell) = \frac{1}{T} \sum_{k=0}^{T-1} y_ky_{k+\ell}, \quad
R_{xx}(\ell) = \frac{1}{T} \sum_{k=0}^{T-1} x_k x_{k+\ell}, \quad
\]
In the sum, we take $x_k=0$ or $y_k=0$ whenever $k < 0$ or $k \geq T$.
\end{enumerate}
\item In audio processing, one often wants to find tonal sounds in
segments of the recordings. This can be formulated as follows:
We are given samples of an audio segment,
$x_k$, $k=0,\ldots,N-1$, and wish to fit a model of the form,
\beq \label{eq:xsincos}
x_k \approx \sum_{\ell = 1}^L a_\ell \cos(\Omega_\ell k) + b_\ell \sin(\Omega_\ell k),
\eeq
where $L$ are a number of tones present in the audio segment;
$\Omega_\ell$ are the tonal frequencies and $a_\ell$ and $b_\ell$ are
the coefficients.
\begin{enumerate}[(a)]
\item Show that if the frequencies $\Omega_\ell$ are given, we can solve
for the coefficients $a_\ell$ and $b_\ell$ using linear regression.
Specifically, rewrite the model \eqref{eq:xsincos} as
$\xbf \approx \Abf\betabf$ for appropriate $\xbf$, $\Abf$ and $\betabf$.
Then describe exactly how we obtain the coefficients $a_\ell$ and $b_\ell$
from this model.
\item Now suppose the frequencies $\Omega_\ell$ were not known.
If we had to solve for the parameters $a_\ell$, $b_\ell$ and $\Omega_\ell$,
would the problem be a linear regression problem?
\end{enumerate}
\item \emph{Python broadcasting}. Rewrite the following code without for-loops using
vectorization and python broadcasting.
\begin{enumerate}[(a)]
\item Given a data matrix \pycode{X} and vector \pycode{beta} compute a vector \pycode{yhat}:
\begin{python}
n = X.shape[0]
yhat = np.zeros(n)
for i in range(n):
yhat[i] = beta[0]*X[i,0] + beta[1]*X[i,1] + beta[2]*X[i,1]*X[i,2]
\end{python}
\item Given vectors \pycode{x}, \pycode{alpha}, and \pycode{beta} computes a vector \pycode{yhat}:
\begin{python}
n = len(x)
m = len(alpha)
yhat = np.zeros(n)
for i in range(n):
for j in range(m):
yhat[i] += alpha[j]*np.exp(-beta[j]*x[i])
\end{python}
\item Given arrays \pycode{x} and \pycode{y}, find the squared distances \pycode{dist}:
\begin{python}
n,d = x.shape
m,d = y.shape
dist = np.zeros((n,m))
for i in range(n):
for j in range(m):
for k in range(d):
dist[i,j] += (x[i,k]-y[j,k])**2
\end{python}
\end{enumerate}
\end{enumerate}
\end{document}