forked from IrisRainbowNeko/genshin_auto_fish
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfishing.py
215 lines (185 loc) · 6.28 KB
/
fishing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import argparse
import os
import time
from loguru import logger
import torch
import keyboard
import winsound
from yolox.exp import get_exp
from yolox.utils import fuse_model, get_model_info
from fisher.environment import *
from fisher.predictor import *
from fisher.models import FishNet
def make_parser():
parser = argparse.ArgumentParser("YOLOX Demo!")
parser.add_argument("demo", default="image", help="demo type, eg. image, video and webcam")
parser.add_argument("-expn", "--experiment-name", type=str, default=None)
parser.add_argument("-n", "--name", type=str, default=None, help="model name")
parser.add_argument("--path", default="./assets/dog.jpg", help="path to images or video")
# exp file
parser.add_argument(
"-f",
"--exp_file",
default=None,
type=str,
help="pls input your experiment description file",
)
parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval")
parser.add_argument(
"--device",
default="cpu",
type=str,
help="device to run our model, can either be cpu or gpu",
)
parser.add_argument("--conf", default=0.3, type=float, help="test conf")
parser.add_argument("--nms", default=0.3, type=float, help="test nms threshold")
parser.add_argument("--tsize", default=None, type=int, help="test img size")
parser.add_argument(
"--fp16",
dest="fp16",
default=False,
action="store_true",
help="Adopting mix precision evaluating.",
)
parser.add_argument(
"--legacy",
dest="legacy",
default=False,
action="store_true",
help="To be compatible with older versions",
)
parser.add_argument(
"--fuse",
dest="fuse",
default=False,
action="store_true",
help="Fuse conv and bn for testing.",
)
parser.add_argument(
"--trt",
dest="trt",
default=False,
action="store_true",
help="Using TensorRT model for testing.",
)
# DQN args
parser.add_argument('--n_states', default=3, type=int)
parser.add_argument('--n_actions', default=2, type=int)
parser.add_argument('--step_tick', default=12, type=int)
parser.add_argument('--model_dir', default='./weights/fish_genshin_net.pth', type=str)
return parser
def main(exp, args):
if not args.experiment_name:
args.experiment_name = exp.exp_name
if args.trt:
args.device = "gpu"
logger.info("Args: {}".format(args))
if args.conf is not None:
exp.test_conf = args.conf
if args.nms is not None:
exp.nmsthre = args.nms
if args.tsize is not None:
exp.test_size = (args.tsize, args.tsize)
model = exp.get_model()
logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size)))
if args.device == "gpu":
model.cuda()
if args.fp16:
model.half() # to FP16
model.eval()
if not args.trt:
if args.ckpt is None:
ckpt_file = os.path.join(file_name, "best_ckpt.pth")
else:
ckpt_file = args.ckpt
logger.info("loading checkpoint")
ckpt = torch.load(ckpt_file, map_location="cpu")
# load the model state dict
model.load_state_dict(ckpt["model"])
logger.info("loaded checkpoint done.")
if args.fuse:
logger.info("\tFusing model...")
model = fuse_model(model)
if args.trt:
assert not args.fuse, "TensorRT model is not support model fusing!"
if args.ckpt is None:
trt_file = os.path.join(file_name, "model_trt.pth")
else:
trt_file = args.ckpt
assert os.path.exists(
trt_file
), "TensorRT model is not found!\n Run python3 tools/trt.py first!"
model.head.decode_in_inference = False
decoder = model.head.decode_outputs
logger.info("Using TensorRT to inference")
else:
trt_file = None
decoder = None
predictor = Predictor(model, exp, FISH_CLASSES, trt_file, decoder, args.device, args.fp16, args.legacy)
agent = FishNet(in_ch=args.n_states, out_ch=args.n_actions)
agent.load_state_dict(torch.load(args.model_dir))
agent.eval()
print('INIT OK')
while True:
print('Waiting for "r" to perform fishing')
winsound.Beep(500, 500)
keyboard.wait('r')
winsound.Beep(500, 500)
if args.demo == "image":
start_fishing(predictor, agent)
def start_fishing(predictor, agent, bite_timeout=45):
ff = FishFind(predictor)
env = Fishing(delay=0.1, max_step=10000, show_det=True)
do_fish_count = 0
while True:
continue_flag = False
if do_fish_count > 4:
winsound.Beep(500, 1000)
time.sleep(0.5)
winsound.Beep(500, 1000)
time.sleep(0.5)
winsound.Beep(500, 1000)
do_fish_count = 0
break
result: bool = ff.do_fish()
# continue if no fish found
if not result:
do_fish_count += 1
continue
do_fish_count = 0
winsound.Beep(700, 500)
times=0
while result is True:
if env.is_bite():
break
time.sleep(0.5)
times+=1
if times>bite_timeout and not(env.is_bite()):
if env.is_fishing():
env.drag()
time.sleep(3)
times=0
continue_flag = True
break
if continue_flag == True:
continue
winsound.Beep(900, 500)
env.drag()
time.sleep(1)
state = env.reset()
for i in range(env.max_step):
state = torch.FloatTensor(state).unsqueeze(0)
action = agent(state)
action = torch.argmax(action, dim=1).numpy()
state, reward, done = env.step(action)
if done:
break
time.sleep(3)
#python fishing.py image -f yolox/exp/yolox_tiny_fish.py -c weights/best_tiny3.pth --conf 0.25 --nms 0.45 --tsize 640 --device gpu
if __name__ == "__main__":
args = make_parser().parse_args()
exp = get_exp(args.exp_file, args.name)
main(exp, args)