-
Notifications
You must be signed in to change notification settings - Fork 5
/
pipeline_for_syria.py
263 lines (217 loc) · 6.61 KB
/
pipeline_for_syria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import argparse
import csv
from sklearn import linear_model, ensemble, svm
import random
import os.path
import ngram
import unionfind
from math import floor
import datetime
from sklearn.svm import SVC
from random import shuffle
def main():
parser = argparse.ArgumentParser(description='Process.')
parser.add_argument('--input', help='file which has all candidate pairs')
parser.add_argument('--output', help='output file')
parser.add_argument('--rawdata', help='file which has raw data')
parser.add_argument('--goldstandpair', help='file that contains all positive and negative pairs')
parser.add_argument('--delimiter', default=',', help='delimeter of input file')
parser.add_argument('--trainsize', default='0.1', help='percentage of total pairs to use in training')
parser.add_argument('--c',default='1', help='SVM hyper paramter')
args = parser.parse_args()
#similarity stage
candidates, matrix, Allpair, Total, raw, goldPairs, negPairs, saved = calculate_sim(args.input, args.rawdata, args.goldstandpair)
#print "similarity matrix calculated"
with open(args.output, 'a') as write:
writer = csv.writer(write, delimiter=' ')
estimate_hashing = random_forest(matrix, candidates, Allpair, Total, raw, goldPairs,negPairs, saved)
writer.writerow([estimate_hashing])
print estimate_hashing
def calculate_sim(inputf, standard, realpair):
raw = {}
#read raw data
Allpair = {}
with open(standard, 'rb') as pairs:
reader = csv.reader(pairs, delimiter=',', quoting=csv.QUOTE_MINIMAL)
reader.next()
i=1
for row in reader:
if row[-1] in Allpair:
Allpair[row[-1]].append(i)
else:
Allpair[row[-1]] = [i]
raw[i] = row
i+=1
Total = len(raw)
#create labeled pairs
goldPairs = []
negPairs = []
with open(realpair, 'rb') as realpair:
reader = csv.reader(realpair, delimiter=',')
reader.next()
for row in reader:
if int(row[-3])==1:
goldPairs.append((int(row[-2]), int(row[-1])))
else:
negPairs.append((int(row[-2]), int(row[-1])))
#read candidate pairs
shuffle(goldPairs)
shuffle(negPairs)
matrix = {}
candidates = []
saved = []
with open(inputf, 'rb') as candidate:
reader = csv.reader(candidate, delimiter=' ')
reader.next()
t = 0
a = datetime.datetime.now()
for row in reader:
t+=1
candidates.append((int(row[0]),int(row[1])))
candidate1 = raw[int(row[0])]
candidate2 = raw[int(row[1])]
datapoint = cal_score(int(row[0]), int(row[1]), raw)
saved.append(datapoint)
return candidates, matrix, Allpair, Total, raw, goldPairs, negPairs, saved
def random_forest(matrix, candidates, Allpair, Total, raw, goldPairs, negPairs, saved):
#split the training and testing data
posnum = 7000
negnum = 16000
split = 0.7
poslist = []
poslabels = []
pospair = []
neglist = []
neglabels = []
negpair = []
trainlist = []
trainlabels = []
testlist = []
testlabels = []
train_pair = []
test_pair = []
randomresultlist = []
randomresultlabels = []
random_pair = []
hashinglist = []
hashinglabels = []
hashing_pair = []
randomlist = {}
random.shuffle(goldPairs)
random.shuffle(negPairs)
#print len(goldPairs)
new_pos = 0
for i in range(posnum):
datapoint = cal_score(goldPairs[i][0], goldPairs[i][1], raw)
if sum(datapoint)>=6:
poslist.append(datapoint[:])
poslabels.append(1)
new_pos+=1
pospair.append(goldPairs[i])
posnum = new_pos
new_neg = 0
for i in range(negnum):
datapoint = cal_score(negPairs[i][0], negPairs[i][1], raw)
if sum(datapoint)<4:
neglist.append(datapoint[:])
neglabels.append(0)
new_neg+=1
negpair.append(negPairs[i])
negnum = new_neg
print posnum, negnum
trainlist = poslist[:int(floor(posnum*split))]+neglist[:int(floor(negnum*split))]
trainlabels = poslabels[:int(floor(posnum*split))]+neglabels[:int(floor(negnum*split))]
train_pair = pospair[:int(floor(posnum*split))]+negpair[:int(floor(negnum*split))]
testlist = poslist[int(floor(posnum*split)):]+neglist[int(floor(negnum*split)):]
testlabels = poslabels[int(floor(posnum*split)):]+neglabels[int(floor(negnum*split)):]
test_pair = pospair[int(floor(posnum*split)):]+negpair[int(floor(negnum*split)):]
q = 0
for i in range(len(candidates)):
#datapoint = cal_score(candidates[i][0], candidates[i][1], raw)
datapoint = saved[i]
hashinglist.append(datapoint[:])
# hashinglabels.append(datapoint[0])
hashing_pair.append(candidates[i])
# print datapoint, candidates[i]
#train lr
svmt = linear_model.LogisticRegression(penalty = 'l2', solver='sag',C=0.00035)
svmt.fit(trainlist, trainlabels)
#test on testing data
testresultlist = svmt.predict(trainlist+testlist)
#test on hashing selection
hashingselection = svmt.predict(hashinglist)
Predict_pairs_hashing = sum(hashingselection)
hashing_recall=0
hashing_recall = calculate_pr(goldPairs, hashingselection, testresultlist,trainlabels+testlabels, train_pair+test_pair, hashing_pair, raw)
print hashing_recall
estimate_hashing = probability(hashingselection, hashing_recall, hashing_pair, raw, train_pair+test_pair, trainlabels+testlabels)
return estimate_hashing
def cal_score(i, j, raw):
result = []
candidate1 = raw[i]
candidate2 = raw[j]
for i in range(min(len(candidate1), len(candidate2))):
score = ngram.NGram.compare(candidate1[i], candidate2[i], N=5)
result.append(score)
return result
def probability(result, p, c_pair, raw, pairs, labels):
cluster = {}
neighbors = {}
checklist = []
j = 0
for i in range(len(c_pair)):
if result[i]==1:
checklist.append(c_pair[i])
j+=1
#checklist = sorted(checklist)
neighbors, u = union_find(checklist, len(raw))
n2 = 0
n3 = 0
n4 = 0
nn = 0
track = 0
#print "long"
for neighbor in neighbors:
if neighbors[neighbor]==1:
track+=1
elif neighbors[neighbor]==2:
n2+=1
elif neighbors[neighbor]==3:
n3+=1
else:
nn+=1
# n4o = 1.0*n4/(1-((1-p)**3)*(p**3)*4-((1-p)**4)*(p**2)*15- ((1-p)**5)*(p)*6)
n1 = track-1
n3o = 1.0*n3/(1 - 3*(1-p)**2*p - (1-p)**3)
n2o = 1.0*(n2 - n3o*(3*(1-p)**2*p))/p
n1o = n1 - 2*n2o*(1-p) - 3*n3o*(1-p)**3 - 3*n3o*p*(1-p)**2
return n1o+n3o+n2o+nn
def calculate_pr(goldPairs, resultlist, testresultlist, labels, test_pair, c_pair, raw):
TP = 0
FP = 0
P = 0
P = sum(labels)
c_pair_dic = {}
indx = 0
for elem in c_pair:
c_pair_dic[elem] = indx
indx+=1
a=0
for i in range(len(labels)):
if labels[i]==1:
if test_pair[i] in c_pair_dic:
if resultlist[c_pair_dic[test_pair[i]]]==1:
a+=1
# print "hashing recall", a*1.0/P, P, a, sum(resultlist), len(c_pair_dic)
if a==0:
return 'inf'
else:
return (a*1.0/P)
def union_find(lis, n):
u = unionfind.unionfind(n+1)
for pair in lis:
u.unite(pair[0], pair[1])
#print "finish"
return u.sizes(), u
if __name__ == "__main__":
main()