-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_recbole_group.py
96 lines (83 loc) · 2.87 KB
/
run_recbole_group.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# @Time : 2023/2/13
# @Author : Gaowei Zhang
# @Email : [email protected]
import argparse
from recbole.quick_start import run
from recbole.utils import list_to_latex
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_list", "-m", type=str, default="BPR", help="name of models"
)
parser.add_argument(
"--dataset", "-d", type=str, default="ml-100k", help="name of datasets"
)
parser.add_argument("--config_files", type=str, default=None, help="config files")
parser.add_argument(
"--valid_latex", type=str, default="./latex/valid.tex", help="config files"
)
parser.add_argument(
"--test_latex", type=str, default="./latex/test.tex", help="config files"
)
parser.add_argument(
"--nproc", type=int, default=1, help="the number of process in this group"
)
parser.add_argument(
"--ip", type=str, default="localhost", help="the ip of master node"
)
parser.add_argument(
"--port", type=str, default="5678", help="the port of master node"
)
parser.add_argument(
"--world_size", type=int, default=-1, help="total number of jobs"
)
parser.add_argument(
"--group_offset",
type=int,
default=0,
help="the global rank offset of this group",
)
args, _ = parser.parse_known_args()
model_list = args.model_list.strip().split(",")
config_file_list = (
args.config_files.strip().split(" ") if args.config_files else None
)
valid_file = args.valid_latex.strip()
test_file = args.test_latex.strip()
valid_result_list = []
test_result_list = []
run_times = len(model_list)
for idx in range(run_times):
model = model_list[idx]
valid_res_dict = {"Model": model}
test_res_dict = {"Model": model}
result = run(
model,
args.dataset,
config_file_list=config_file_list,
nproc=args.nproc,
world_size=args.world_size,
ip=args.ip,
port=args.port,
group_offset=args.group_offset,
)
valid_res_dict.update(result["best_valid_result"])
test_res_dict.update(result["test_result"])
bigger_flag = result["valid_score_bigger"]
subset_columns = list(result["best_valid_result"].keys())
valid_result_list.append(valid_res_dict)
test_result_list.append(test_res_dict)
df_valid, tex_valid = list_to_latex(
convert_list=valid_result_list,
bigger_flag=bigger_flag,
subset_columns=subset_columns,
)
df_test, tex_test = list_to_latex(
convert_list=test_result_list,
bigger_flag=bigger_flag,
subset_columns=subset_columns,
)
with open(valid_file, "w") as f:
f.write(tex_valid)
with open(test_file, "w") as f:
f.write(tex_test)