-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdsin.txt
631 lines (620 loc) · 29.6 KB
/
dsin.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
#1
char Aclass(3,24)
Adymosim
1.4
Modelica experiment file
//TEST EDIT
# Experiment parameters
double experiment(7,1)
0 # StartTime Time at which integration starts
# (and linearization and trimming time)
1 # StopTime Time at which integration stops
0 # Increment Communication step size, if > 0
500 # nInterval Number of communication intervals, if > 0
1.0000000000000000E-004 # Tolerance Relative precision of signals for
# simulation, linearization and trimming
0 # MaxFixedStep Maximum step size of fixed step size
# integrators, if > 0.0
8 # Algorithm Integration algorithm as integer (1...28)
#
# | model| | | dense | state |
# Algorithm | typ | stiff | order | output| event |
# ------------+------+-------+--------+-------+-------+
# 1 | deabm | ode | no | 1-12 | yes | no |
# 2 | lsode1 | ode | no | 1-12 | yes | no |
# 3 | lsode2 | ode | yes | 1-5 | yes | no |
# 4 | lsodar | ode | both |1-12,1-5| yes | yes |
# 5 | dopri5 | ode | no | 5 | no | no |
# 6 | dopri8 | ode | no | 8 | no | no |
# 7 | grk4t | ode | yes | 4 | no | no |
# 8 | dassl | dae | yes | 1-5 | yes | yes |
# 9 | odassl | hdae | yes | 1-5 | yes | yes |
# 10 | mexx | hdae | no | 2-24 | no | no |
# 11 | euler | ode | no | 1 | no | yes |
# 12 | rkfix2 | ode | no | 2 | no | yes |
# 13 | rkfix3 | ode | no | 3 | no | yes |
# 14 | rkfix4 | ode | no | 4 | no | yes |
#>=14| others | ode |yes/no | 2-5 | yes | yes |
# ---+--------+------+-------+--------+-------+-------+
# euler and rkfix have fixed stepsize.
# Method tuning parameters
double method(27,1)
1 # grid type of communication time grid, defined by
# = 1: equidistant points ("Increment/nInterval")
# = 2: vector of grid points ("tgrid")
# = 3: variable step integrator (automatically)
# = 4: model (call of "increment" in Dymola, e.g.
# incr=Time > 2 then 0 else 0.1
# dummy=increment(incr))
# grid = 1,3 is stopped by "StopTime"
# grid = 2 is stopped by "tgrid(last)"
# grid = 4 runs forever (stopped by model)
1 # nt Use every NT time instant, if grid = 3
3 # dense 1/2/3 restart/step/interpolate GRID points
1 # evgrid 0/1 do not/save event points in comm. time grid
1 # evu 0/1 U-discontinuity does not/trigger events
0 # evuord U-discontinuity order to consider (0,1,...)
0 # error 0/1/2 One message/warning/error messages
0 # jac 0/1 Compute jacobian numerically/by BLOCKJ
0 # xd0c 0/1 Compute/set XD0
0 # f3 0/1 Ignore/use F3 of HDAE (= index 1)
0 # f4 0/1 Ignore/use F4 of HDAE (= index 2)
0 # f5 0/1 Ignore/use F5 of HDAE (= invar.)
0 # debug flags for debug information (1<<0 uses pdebug)
100 # pdebug priority of debug information (1...100)
0 # fmax Maximum number of evaluations of BLOCKF, if > 0
0 # ordmax Maximum allowed integration order, if > 0
0 # hmax Maximum absolute stepsize, if > 0
0 # hmin Minimum absolute stepsize, if > 0 (use with care!)
0 # h0 Stepsize to be attempted on first step, if > 0
2.0000000000000000E-014 # teps Bound to check, if 2 equal time instants
1.0000000000000000E-010 # eveps Hysteresis epsilon at event points
20 # eviter Maximum number of event iterations
9.9999999999999995E-007 # delaym Minimum time increment in delay buffers
1 # fexcep 0/1 floating exception crashes/stops dymosim
1 # tscale clock-time = tscale*simulation-time, if grid = 5
# > 1: simulation too slow
# = 1: simulation-time = real-time
# < 1: simulation too fast
1 # shared (not used)
2473 # memkey (not used)
# Output parameters
int settings(13,1)
0 # lprec 0/1 do not/store result data in double
1 # lx 0/1 do not/store x (state variables)
1 # lxd 0/1 do not/store xd (derivative of states)
1 # lu 0/1 do not/store u (input signals)
1 # ly 0/1 do not/store y (output signals)
0 # lz 0/1 do not/store z (indicator signals)
1 # lw 0/1 do not/store w (auxiliary signals)
1 # la 0/1 do not/store a (alias signals)
0 # lperf 0/1 do not/store performance indicators
0 # levent 0/1 do not/store event point
1 # lres 0/1 do not/store results on result file
0 # lshare 0/1 do not/store info data for shared memory on dsshare.txt
1 # lform 0/1 ASCII/Matlab-binary storage format of results
# (for simulation/linearization; not for trimming)
# Names of initial variables
char initialName(118,41)
pressureIncrease.medium.rho
pressureIncrease.medium.cp
pressureIncrease.medium.cv
pressureIncrease.medium.lamda
pressureIncrease.medium.nue
pressureIncrease.m
pressureIncrease.T0
pressureIncrease.T0fixed
pressureIncrease.tapT
pressureIncrease.V_flow
pressureIncrease.Q_flow
pressureIncrease.T
pressureIncrease.der(T)
pressureIncrease.T_a
pressureIncrease.T_b
pressureIncrease.dT
pressureIncrease.h
pressureIncrease.der(h)
pressureIncrease.flowPort_a.medium.rho
pressureIncrease.flowPort_a.medium.cp
pressureIncrease.flowPort_a.medium.cv
pressureIncrease.flowPort_a.medium.lamda
pressureIncrease.flowPort_a.medium.nue
pressureIncrease.flowPort_a.m_flow
pressureIncrease.flowPort_a.h
pressureIncrease.flowPort_a.der(h)
pressureIncrease.flowPort_a.H_flow
pressureIncrease.flowPort_b.medium.rho
pressureIncrease.flowPort_b.medium.cp
pressureIncrease.flowPort_b.medium.cv
pressureIncrease.flowPort_b.medium.lamda
pressureIncrease.flowPort_b.medium.nue
pressureIncrease.flowPort_b.p
pressureIncrease.flowPort_b.h
pressureIncrease.flowPort_b.der(h)
pressureIncrease.flowPort_b.H_flow
pressureIncrease.usePressureIncreaseInput
pressureIncrease.constantPressureIncrease
heatedPipe.medium.rho
heatedPipe.medium.cp
heatedPipe.medium.cv
heatedPipe.medium.lamda
heatedPipe.medium.nue
heatedPipe.m
heatedPipe.T0
heatedPipe.T0fixed
heatedPipe.tapT
heatedPipe.dp
heatedPipe.V_flow
heatedPipe.Q_flow
heatedPipe.T
heatedPipe.der(T)
heatedPipe.T_a
heatedPipe.der(T_a)
heatedPipe.T_b
heatedPipe.der(T_b)
heatedPipe.dT
heatedPipe.der(dT)
heatedPipe.h
heatedPipe.der(h)
heatedPipe.flowPort_a.medium.rho
heatedPipe.flowPort_a.medium.cp
heatedPipe.flowPort_a.medium.cv
heatedPipe.flowPort_a.medium.lamda
heatedPipe.flowPort_a.medium.nue
heatedPipe.flowPort_b.medium.rho
heatedPipe.flowPort_b.medium.cp
heatedPipe.flowPort_b.medium.cv
heatedPipe.flowPort_b.medium.lamda
heatedPipe.flowPort_b.medium.nue
heatedPipe.V_flowLaminar
heatedPipe.dpLaminar
heatedPipe.V_flowNominal
heatedPipe.dpNominal
heatedPipe.frictionLoss
heatedPipe.pressureDrop
heatedPipe.Q_friction
heatedPipe.dpNomMin
heatedPipe.k
heatedPipe.h_g
heatedPipe.heatPort.Q_flow
heatCapacitorPCMLike00_1.C
heatCapacitorPCMLike00_1.T
heatCapacitorPCMLike00_1.der(T)
heatCapacitorPCMLike00_1.cp_h2o
heatCapacitorPCMLike00_1.cp_PCM
heatCapacitorPCMLike00_1.rho_h2o
heatCapacitorPCMLike00_1.rho_PCM
heatCapacitorPCMLike00_1.V_tank
heatCapacitorPCMLike00_1.fracPCM_vol
heatCapacitorPCMLike00_1.hfg_pcm
heatCapacitorPCMLike00_1.T_sc
heatCapacitorPCMLike00_1.T_melt
pressureSensor.medium.rho
pressureSensor.medium.cp
pressureSensor.medium.cv
pressureSensor.medium.lamda
pressureSensor.medium.nue
pressureSensor.flowPort.medium.rho
pressureSensor.flowPort.medium.cp
pressureSensor.flowPort.medium.cv
pressureSensor.flowPort.medium.lamda
pressureSensor.flowPort.medium.nue
pressureSensor.flowPort.m_flow
pressureSensor.flowPort.H_flow
absolutePressure.medium.rho
absolutePressure.medium.cp
absolutePressure.medium.cv
absolutePressure.medium.lamda
absolutePressure.medium.nue
absolutePressure.p
absolutePressure.flowPort.medium.rho
absolutePressure.flowPort.medium.cp
absolutePressure.flowPort.medium.cv
absolutePressure.flowPort.medium.lamda
absolutePressure.flowPort.medium.nue
absolutePressure.flowPort.m_flow
absolutePressure.flowPort.H_flow
double initialValue(118,6)
-1 9.9560000000000002E+002 0 1.0000000000000000E+100
1 280 # pressureIncrease.medium.rho
-1 4177 0 0
1 280 # pressureIncrease.medium.cp
-1 4177 0 0
1 280 # pressureIncrease.medium.cv
-1 6.1499999999999999E-001 0 0
1 280 # pressureIncrease.medium.lamda
-1 7.9999999999999996E-007 0 1.0000000000000000E+100
1 280 # pressureIncrease.medium.nue
0 1 0 1.0000000000000000E+100
6 256 # pressureIncrease.m
-1 2.9314999999999998E+002 0 1.0000000000000000E+100
1 280 # pressureIncrease.T0
0 0 0 0
6 257 # pressureIncrease.T0fixed
0 1 0 1
6 256 # pressureIncrease.tapT
0 0 0 0
6 256 # pressureIncrease.V_flow
0 0 0 0
6 256 # pressureIncrease.Q_flow
-1 0 0 1.0000000000000000E+100
2 272 # pressureIncrease.T
0 0 0 0
3 256 # pressureIncrease.der(T)
0 2.8814999999999998E+002 0 1.0000000000000000E+100
6 256 # pressureIncrease.T_a
0 2.8814999999999998E+002 0 1.0000000000000000E+100
6 256 # pressureIncrease.T_b
0 0 0 0
6 256 # pressureIncrease.dT
0 0 0 0
6 1280 # pressureIncrease.h
0 0 0 0
6 1280 # pressureIncrease.der(h)
0 0 0 1.0000000000000000E+100
6 256 # pressureIncrease.flowPort_a.medium.rho
0 0 0 0
6 256 # pressureIncrease.flowPort_a.medium.cp
0 0 0 0
6 256 # pressureIncrease.flowPort_a.medium.cv
0 0 0 0
6 256 # pressureIncrease.flowPort_a.medium.lamda
0 0 0 1.0000000000000000E+100
6 256 # pressureIncrease.flowPort_a.medium.nue
0 0 0 0
6 388 # pressureIncrease.flowPort_a.m_flow
0 0 0 0
6 260 # pressureIncrease.flowPort_a.h
0 0 0 0
6 260 # pressureIncrease.flowPort_a.der(h)
0 0 0 0
6 388 # pressureIncrease.flowPort_a.H_flow
0 0 0 1.0000000000000000E+100
6 256 # pressureIncrease.flowPort_b.medium.rho
0 0 0 0
6 256 # pressureIncrease.flowPort_b.medium.cp
0 0 0 0
6 256 # pressureIncrease.flowPort_b.medium.cv
0 0 0 0
6 256 # pressureIncrease.flowPort_b.medium.lamda
0 0 0 1.0000000000000000E+100
6 256 # pressureIncrease.flowPort_b.medium.nue
0 0 0 0
6 260 # pressureIncrease.flowPort_b.p
0 0 0 0
6 260 # pressureIncrease.flowPort_b.h
0 0 0 0
6 260 # pressureIncrease.flowPort_b.der(h)
0 0 0 0
6 388 # pressureIncrease.flowPort_b.H_flow
0 0 0 0
6 257 # pressureIncrease.usePressureIncreaseInput
-1 20000 0 0
1 280 # pressureIncrease.constantPressureIncrease
-1 9.9560000000000002E+002 0 1.0000000000000000E+100
1 280 # heatedPipe.medium.rho
-1 4177 0 0
1 280 # heatedPipe.medium.cp
-1 4177 0 0
1 280 # heatedPipe.medium.cv
-1 6.1499999999999999E-001 0 0
1 280 # heatedPipe.medium.lamda
-1 7.9999999999999996E-007 0 1.0000000000000000E+100
1 280 # heatedPipe.medium.nue
0 10 0 1.0000000000000000E+100
6 256 # heatedPipe.m
-1 2.9314999999999998E+002 0 1.0000000000000000E+100
1 280 # heatedPipe.T0
0 0 0 0
6 257 # heatedPipe.T0fixed
-1 1 0 1
1 280 # heatedPipe.tapT
0 0 0 0
6 256 # heatedPipe.dp
0 0 0 0
6 288 # heatedPipe.V_flow
0 0 0 0
6 256 # heatedPipe.Q_flow
-1 0 0 1.0000000000000000E+100
2 272 # heatedPipe.T
0 0 0 0
3 256 # heatedPipe.der(T)
0 2.8814999999999998E+002 0 1.0000000000000000E+100
6 256 # heatedPipe.T_a
0 0 0 0
6 256 # heatedPipe.der(T_a)
0 2.8814999999999998E+002 0 1.0000000000000000E+100
6 256 # heatedPipe.T_b
0 0 0 0
6 256 # heatedPipe.der(T_b)
0 0 0 0
6 256 # heatedPipe.dT
0 0 0 0
6 256 # heatedPipe.der(dT)
0 0 0 0
6 1280 # heatedPipe.h
0 0 0 0
6 1280 # heatedPipe.der(h)
0 0 0 1.0000000000000000E+100
6 256 # heatedPipe.flowPort_a.medium.rho
0 0 0 0
6 256 # heatedPipe.flowPort_a.medium.cp
0 0 0 0
6 256 # heatedPipe.flowPort_a.medium.cv
0 0 0 0
6 256 # heatedPipe.flowPort_a.medium.lamda
0 0 0 1.0000000000000000E+100
6 256 # heatedPipe.flowPort_a.medium.nue
0 0 0 1.0000000000000000E+100
6 256 # heatedPipe.flowPort_b.medium.rho
0 0 0 0
6 256 # heatedPipe.flowPort_b.medium.cp
0 0 0 0
6 256 # heatedPipe.flowPort_b.medium.cv
0 0 0 0
6 256 # heatedPipe.flowPort_b.medium.lamda
0 0 0 1.0000000000000000E+100
6 256 # heatedPipe.flowPort_b.medium.nue
0 1.6666666666667000E-005 9.9999999999999997E-061 1.0000000000000000E+100
6 256 # heatedPipe.V_flowLaminar
-1 30000 0 0
1 280 # heatedPipe.dpLaminar
-1 8.3333333333333005E-005 0 0
1 280 # heatedPipe.V_flowNominal
-1 3.0000000000000000E+005 0 0
1 280 # heatedPipe.dpNominal
-1 0 0 1
1 280 # heatedPipe.frictionLoss
0 0 0 0
6 256 # heatedPipe.pressureDrop
0 0 0 0
6 256 # heatedPipe.Q_friction
0 0 0 0
6 1280 # heatedPipe.dpNomMin
0 0 0 0
6 1280 # heatedPipe.k
-1 0 0 0
1 280 # heatedPipe.h_g
0 0 0 0
6 388 # heatedPipe.heatPort.Q_flow
0 0 0 0
6 320 # heatCapacitorPCMLike00_1.C
0 3.3314999999999998E+002 0 1.0000000000000000E+100
6 256 # heatCapacitorPCMLike00_1.T
0 0 0 0
6 256 # heatCapacitorPCMLike00_1.der(T)
-1 4.1769999999999996E+000 0 0
1 280 # heatCapacitorPCMLike00_1.cp_h2o
-1 2.8999999999999999E+000 0 0
1 280 # heatCapacitorPCMLike00_1.cp_PCM
-1 995 0 0
1 280 # heatCapacitorPCMLike00_1.rho_h2o
-1 900 0 0
1 280 # heatCapacitorPCMLike00_1.rho_PCM
-1 1 0 0
1 280 # heatCapacitorPCMLike00_1.V_tank
-1 5.9999999999999998E-001 0 0
1 280 # heatCapacitorPCMLike00_1.fracPCM_vol
-1 100 1.0000000000000000E-002 1.0000000000000000E+100
1 280 # heatCapacitorPCMLike00_1.hfg_pcm
0 358 0 1.0000000000000000E+100
6 256 # heatCapacitorPCMLike00_1.T_sc
0 364 0 1.0000000000000000E+100
6 256 # heatCapacitorPCMLike00_1.T_melt
-1 9.9560000000000002E+002 0 1.0000000000000000E+100
1 280 # pressureSensor.medium.rho
-1 4177 0 0
1 280 # pressureSensor.medium.cp
-1 4177 0 0
1 280 # pressureSensor.medium.cv
-1 6.1499999999999999E-001 0 0
1 280 # pressureSensor.medium.lamda
-1 7.9999999999999996E-007 0 1.0000000000000000E+100
1 280 # pressureSensor.medium.nue
0 0 0 1.0000000000000000E+100
6 256 # pressureSensor.flowPort.medium.rho
0 0 0 0
6 256 # pressureSensor.flowPort.medium.cp
0 0 0 0
6 256 # pressureSensor.flowPort.medium.cv
0 0 0 0
6 256 # pressureSensor.flowPort.medium.lamda
0 0 0 1.0000000000000000E+100
6 256 # pressureSensor.flowPort.medium.nue
0 0 0 0
6 388 # pressureSensor.flowPort.m_flow
0 0 0 0
6 388 # pressureSensor.flowPort.H_flow
-1 9.9560000000000002E+002 0 1.0000000000000000E+100
1 280 # absolutePressure.medium.rho
-1 4177 0 0
1 280 # absolutePressure.medium.cp
-1 4177 0 0
1 280 # absolutePressure.medium.cv
-1 6.1499999999999999E-001 0 0
1 280 # absolutePressure.medium.lamda
-1 7.9999999999999996E-007 0 1.0000000000000000E+100
1 280 # absolutePressure.medium.nue
-1 10000 0 0
1 280 # absolutePressure.p
0 0 0 1.0000000000000000E+100
6 256 # absolutePressure.flowPort.medium.rho
0 0 0 0
6 256 # absolutePressure.flowPort.medium.cp
0 0 0 0
6 256 # absolutePressure.flowPort.medium.cv
0 0 0 0
6 256 # absolutePressure.flowPort.medium.lamda
0 0 0 1.0000000000000000E+100
6 256 # absolutePressure.flowPort.medium.nue
0 0 0 0
6 388 # absolutePressure.flowPort.m_flow
0 0 0 0
6 388 # absolutePressure.flowPort.H_flow
# Matrix with 6 columns defining the initial value calculation
# (columns 5 and 6 are not utilized for the calculation but are
# reported by dymosim via dymosim -i for user convenience):
#
# column 1: Type of initial value
# = -2: special case: for continuing simulation (column 2 = value)
# = -1: fixed value (column 2 = fixed value)
# = 0: free value, i.e., no restriction (column 2 = initial value)
# > 0: desired value (column 1 = weight for optimization
# column 2 = desired value)
# use weight=1, since automatic scaling usually
# leads to equally weighted terms
# column 2: fixed, free or desired value according to column 1.
# column 3: Minimum value (ignored, if Minimum >= Maximum).
# column 4: Maximum value (ignored, if Minimum >= Maximum).
# Minimum and maximum restrict the search range in initial
# value calculation. They might also be used for scaling.
# column 5: Category of variable.
# = 1: parameter.
# = 2: state.
# = 3: state derivative.
# = 4: output.
# = 5: input.
# = 6: auxiliary variable.
# column 6: Data type of variable.
# = 0: real.
# = 1: boolean.
# = 2: integer.
#
# Initial values are calculated according to the following procedure:
#
# - If parameters, states and inputs are FIXED, and other variables
# are FREE, no special action takes place (default setting).
#
# - If there are only FIXED and FREE variables and the number of
# FREE parameters, states and inputs is IDENTICAL to the number of
# FIXED state derivatives, outputs and auxiliary variables, a non-linear
# equation is solved to determine a consistent set of initial conditions.
#
# - In all other cases the following optimization problem is solved:
# min( sum( weight(i)*( (value(i) - DESIRED(i))/scale(i) )^2 ) )
# under the constraint that the differential equation is fulfilled
# at the initial time. In most cases weight(i)=1 is sufficient, due
# to the automatic scaling (if DESIRED(i) is not close to zero,
# scale(i) = DESIRED(i). Otherwise, the scaling is based on the
# nominal value (and maybe minimum and maximum values given in
# column 3 and 4). If these values are zero, scale(i)=1 is used).
#
char initialDescription(118,72)
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
Mass of medium [kg]
Initial temperature of medium [K|degC]
Initial temperature guess value or fixed [:#(type=Boolean)]
Defines temperature of heatPort between inlet and outlet temperature
Volume flow a->b [m3/s]
Heat exchange with ambient [W]
Outlet temperature of medium [K|degC]
der(Outlet temperature of medium) [K/s]
Temperature at flowPort_a [K|degC]
Temperature at flowPort_b [K|degC]
Temperature increase of coolant in flow direction [K,]
Medium's specific enthalpy [J/kg]
der(Medium's specific enthalpy) [m2/s3]
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
[kg/s]
[J/kg]
[m2/s3]
[W]
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
[Pa|bar]
[J/kg]
[m2/s3]
[W]
Enable / disable pressure increase input [:#(type=Boolean)]
Pressure increase [Pa|bar]
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
Mass of medium [kg]
Initial temperature of medium [K|degC]
Initial temperature guess value or fixed [:#(type=Boolean)]
Defines temperature of heatPort between inlet and outlet temperature
Pressure drop a->b [Pa|bar]
Volume flow a->b [m3/s]
Heat exchange with ambient [W]
Outlet temperature of medium [K|degC]
der(Outlet temperature of medium) [K/s]
Temperature at flowPort_a [K|degC]
der(Temperature at flowPort_a) [K/s]
Temperature at flowPort_b [K|degC]
der(Temperature at flowPort_b) [K/s]
Temperature increase of coolant in flow direction [K,]
der(Temperature increase of coolant in flow direction) [K/s]
Medium's specific enthalpy [J/kg]
der(Medium's specific enthalpy) [m2/s3]
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
Laminar volume flow [m3/s|l/min]
Laminar pressure drop [Pa|kPa]
Nominal volume flow [m3/s|l/min]
Nominal pressure drop [Pa|kPa]
Part of friction losses fed to medium [1]
[Pa|bar]
[W]
[Pa|bar]
[Pa.s2/m6]
Geodetic height (heigth difference from flowPort_a to flowPort_b) [m]
Heat flow rate (positive if flowing from outside into the component) [W]
Heat capacity of element (= cp*m) [J/K]
Temperature of element [K|degC]
der(Temperature of element) [K/s]
spec heat cap water
spec heat cap paraffin
density water
density PCM
density PCM
fraction of volume that is PCM
[kJ/kg]
lowest subcooling temperature [K|degC]
highest melting temperature [K|degC]
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
[kg/s]
[W]
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
Pressure ground [Pa|bar]
Density [kg/m3|g/cm3]
Specific heat capacity at constant pressure [J/(kg.K)]
Specific heat capacity at constant volume [J/(kg.K)]
Thermal conductivity [W/(m.K)]
Kinematic viscosity [m2/s]
[kg/s]
[W]