This repository has been archived by the owner on Jun 3, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_installation.py
131 lines (116 loc) · 4.04 KB
/
test_installation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
from typing import List, Iterator
import torch
import torch.distributed as dist
from torch.distributed.elastic.multiprocessing.errors import record
from torchrec import EmbeddingBagCollection
from torchrec import KeyedJaggedTensor
from torchrec.distributed.model_parallel import DistributedModelParallel
from torchrec.models.dlrm import DLRM
from torchrec.modules.embedding_configs import EmbeddingBagConfig
from torchrec.optim.keyed import KeyedOptimizerWrapper
class RandomIterator(Iterator):
def __init__(
self, batch_size: int, num_dense: int, num_sparse: int, num_embeddings: int
) -> None:
self.batch_size = batch_size
self.num_dense = num_dense
self.num_sparse = num_sparse
self.sparse_keys = [f"feature{id}" for id in range(self.num_sparse)]
self.num_embeddings = num_embeddings
self.num_ids_per_feature = 3
self.num_ids_to_generate = (
self.num_sparse * self.num_ids_per_feature * self.batch_size
)
def __next__(self) -> (torch.Tensor, KeyedJaggedTensor, torch.Tensor):
float_features = torch.randn(
self.batch_size,
self.num_dense,
)
labels = torch.randint(
low=0,
high=2,
size=(self.batch_size,),
)
sparse_ids = torch.randint(
high=self.num_sparse,
size=(self.num_ids_to_generate,),
)
sparse_features = KeyedJaggedTensor.from_offsets_sync(
keys=self.sparse_keys,
values=sparse_ids,
offsets=torch.tensor(
list(range(0, self.num_ids_to_generate + 1, self.num_ids_per_feature)),
dtype=torch.int32,
),
)
return (float_features, sparse_features, labels)
@record
def main(argv: List[str]) -> None:
batch_size = 1024
num_dense = 1000
num_sparse = 20
num_embeddings = 1000000
configs = [
EmbeddingBagConfig(
name=f"table{id}",
embedding_dim=64,
num_embeddings=num_embeddings,
feature_names=[f"feature{id}"],
)
for id in range(num_sparse)
]
rank = int(os.environ["LOCAL_RANK"])
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
backend = "nccl"
torch.cuda.set_device(device)
else:
device = torch.device("cpu")
backend = "gloo"
print(
"\033[92m"
+ "Warning: CUDA not available! Is this meant to be a CPU installation?"
)
dist.init_process_group(backend=backend)
model = DLRM(
embedding_bag_collection=EmbeddingBagCollection(
tables=configs, device=torch.device("meta")
),
dense_in_features=num_dense,
dense_arch_layer_sizes=[500, 64],
over_arch_layer_sizes=[32, 16, 1],
dense_device=device,
)
model = DistributedModelParallel(
module=model,
device=device,
)
optimizer = KeyedOptimizerWrapper(
dict(model.named_parameters()),
lambda params: torch.optim.SGD(params, lr=0.01),
)
random_iterator = RandomIterator(batch_size, num_dense, num_sparse, num_embeddings)
loss_fn = torch.nn.BCEWithLogitsLoss()
for _ in range(10):
(dense_features, sparse_features, labels) = next(random_iterator)
dense_features = dense_features.to(device)
sparse_features = sparse_features.to(device)
output = model(dense_features, sparse_features)
labels = labels.to(device)
loss = loss_fn(output.squeeze(), labels.float())
torch.sum(loss, dim=0).backward()
optimizer.zero_grad()
optimizer.step()
print(
"\033[92m" + "Successfully ran a few epochs for DLRM. Installation looks good!"
)
if __name__ == "__main__":
main(sys.argv[1:])