forked from ROCm/rocRAND
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpi.py
79 lines (65 loc) · 2.42 KB
/
pi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright (c) 2017 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import rocrand
import numpy as np
interactive = True
if not interactive:
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
figsize = None
if not interactive:
figsize = (30, 20)
plt.figure(1, figsize=figsize)
plt.suptitle("Estimating Pi using Monte Carlo method")
n = 10000
cols = 3
for col in range(cols):
if col == 0:
title = "numpy.random"
np.random.seed(0)
xy = np.random.uniform(size=(2, n))
elif col == 1:
title = "rocrand.PRNG"
gen = rocrand.PRNG()
xy = np.empty(shape=(2, n))
gen.uniform(xy)
elif col == 2:
title = "rocrand.QRNG"
gen = rocrand.QRNG(ndim=2)
xy = np.empty(shape=(2, n))
gen.uniform(xy)
inside = xy[0]**2 + xy[1]**2 <= 1.0
in_xy = xy[:, inside]
out_xy = xy[:, ~inside]
trials = np.arange(1, n + 1)
hits = np.cumsum(inside)
pis = 4.0 * (hits.astype(np.float) / trials)
plt.subplot(2, 3, col + 1, aspect="equal")
plt.title(title)
plt.scatter(*in_xy, c="g", marker=".", s=0.5)
plt.scatter(*out_xy, c="r", marker=".", s=0.5)
plt.subplot(2, 3, cols + col + 1)
plt.axhline(y=np.pi, color="b", linestyle="-")
plt.plot(trials, pis, color="c", linewidth=0.5)
plt.ylim(2.8, 3.4)
plt.show()
if not interactive:
plt.savefig("pi.png")