forked from google-research/bert
-
Notifications
You must be signed in to change notification settings - Fork 7
/
optimization.py
592 lines (495 loc) · 21.6 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions and classes related to optimization (weight updates)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
try:
import horovod.tensorflow as hvd
from horovod.tensorflow.compression import Compression
except:
hvd = None
def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu, use_hvd=False, optimizer_type="adam", use_amp=False):
"""Creates an optimizer training op."""
global_step = tf.compat.v1.train.get_or_create_global_step()
learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
# Implements linear or square root decay of the learning rate.
if optimizer_type == "adam":
power = 1.0
elif optimizer_type == "lamb":
power = 0.5
elif optimizer_type == "nadam":
power = 1.0
else:
power = 0.5
learning_rate = tf.compat.v1.train.polynomial_decay(
learning_rate,
global_step,
num_train_steps,
end_learning_rate=0.0,
power=power,
cycle=False)
# if use_hvd:
# # May want to scale learning rate by number of GPUs
# learning_rate *= hvd.size()
# Implements linear warmup. I.e., if global_step < num_warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
if num_warmup_steps:
global_steps_int = tf.cast(global_step, tf.int32)
warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
global_steps_float = tf.cast(global_steps_int, tf.float32)
warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
warmup_percent_done = global_steps_float / warmup_steps_float
warmup_learning_rate = init_lr * warmup_percent_done
is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
learning_rate = (
(1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
# It is recommended that you use this optimizer for fine tuning, since this
# is how the model was trained (note that the Adam m/v variables are NOT
# loaded from init_checkpoint.)
if optimizer_type == "adam":
print("Initializing ADAM Optimizer")
optimizer = AdamWeightDecayOptimizer(
learning_rate=learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
elif optimizer_type == "lamb":
print("Initializing LAMB Optimizer")
optimizer = LAMBOptimizer(
learning_rate=learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
elif optimizer_type == "nadam":
print("Initializing NADAM Optimizer")
optimizer = NadamWeightDecayOptimizer(
learning_rate=learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
else:
print("Initializing NLAMB Optimizer")
optimizer = NlambOptimizer(
learning_rate=learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
if use_hvd:
# [HVD] Wrap the original optimizer by Horovod's distributed optimizer, which handles all the under the hood allreduce calls.
# Notice Horovod only does synchronized parameter update.
optimizer = hvd.DistributedOptimizer(optimizer, sparse_as_dense=True, compression=Compression.fp16 if (use_amp) else Compression.none)
if use_tpu:
optimizer = tf.compat.v1.tpu.CrossShardOptimizer(optimizer)
if use_amp:
optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(optimizer)
loss_scale = tf.identity(optimizer._loss_scale(), name='amp_loss_scale')
tvars = tf.compat.v1.trainable_variables()
if use_hvd:
# [HVD] Use distributed optimizer to compute gradients
grads_and_vars=optimizer.compute_gradients(loss, tvars)
grads = [grad for grad,var in grads_and_vars]
tvars = [var for grad,var in grads_and_vars]
else:
# Use standard TF gradients
grads = tf.gradients(ys=loss, xs=tvars)
# This is how the model was pre-trained.
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step)
# Normally the global step update is done inside of `apply_gradients`.
# However, `AdamWeightDecayOptimizer` doesn't do this. But if you use
# a different optimizer, you should probably take this line out.
new_global_step = global_step + 1
train_op = tf.group(train_op, [global_step.assign(new_global_step)])
return train_op
class AdamWeightDecayOptimizer(tf.compat.v1.train.Optimizer):
"""A basic Adam optimizer that includes "correct" L2 weight decay."""
def __init__(self,
learning_rate,
weight_decay_rate=0.0,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
name="AdamWeightDecayOptimizer"):
"""Constructs a AdamWeightDecayOptimizer."""
super(AdamWeightDecayOptimizer, self).__init__(False, name)
self.learning_rate = tf.identity(learning_rate, name='learning_rate')
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""See base class."""
assignments = []
for (grad, param) in grads_and_vars:
if grad is None or param is None:
continue
param_name = self._get_variable_name(param.name)
m = tf.compat.v1.get_variable(
name=param_name + "/adam_m",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.compat.v1.zeros_initializer())
v = tf.compat.v1.get_variable(
name=param_name + "/adam_v",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.compat.v1.zeros_initializer())
# Standard Adam update.
next_m = (
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
next_v = (
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
tf.square(grad)))
update = next_m / (tf.sqrt(next_v) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += self.weight_decay_rate * param
update_with_lr = self.learning_rate * update
next_param = param - update_with_lr
assignments.extend(
[param.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
return tf.group(*assignments, name=name)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
class LAMBOptimizer(tf.compat.v1.train.Optimizer):
"""
LAMBOptimizer optimizer.
https://github.com/ymcui/LAMB_Optimizer_TF
# References
- Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. https://arxiv.org/abs/1904.00962v3
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. https://arxiv.org/abs/1810.04805
# Parameters
- There is nothing special, just the same as `AdamWeightDecayOptimizer`.
"""
def __init__(self,
learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
name="LAMBOptimizer"):
"""Constructs a LAMBOptimizer."""
super(LAMBOptimizer, self).__init__(False, name)
self.learning_rate = tf.identity(learning_rate, name='learning_rate')
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""See base class."""
assignments = []
for (grad, param) in grads_and_vars:
if grad is None or param is None:
continue
param_name = self._get_variable_name(param.name)
m = tf.compat.v1.get_variable(
name=param_name + "/lamb_m",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.compat.v1.zeros_initializer())
v = tf.compat.v1.get_variable(
name=param_name + "/lamb_v",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.compat.v1.zeros_initializer())
# Standard Adam update.
next_m = (
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
next_v = (
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
tf.square(grad)))
update = next_m / (tf.sqrt(next_v) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += self.weight_decay_rate * param
############## BELOW ARE THE SPECIFIC PARTS FOR LAMB ##############
# Note: Here are two choices for scaling function \phi(z)
# minmax: \phi(z) = min(max(z, \gamma_l), \gamma_u)
# identity: \phi(z) = z
# The authors does not mention what is \gamma_l and \gamma_u
# UPDATE: after asking authors, they provide me the code below.
# ratio = array_ops.where(math_ops.greater(w_norm, 0), array_ops.where(
# math_ops.greater(g_norm, 0), (w_norm / g_norm), 1.0), 1.0)
r1 = tf.sqrt(tf.reduce_sum(input_tensor=tf.square(param)))
r2 = tf.sqrt(tf.reduce_sum(input_tensor=tf.square(update)))
r = tf.compat.v1.where(tf.greater(r1, 0.0), tf.compat.v1.where(
tf.greater(r2, 0.0), r1/r2, 1.0), 1.0)
eta = self.learning_rate * r
update_with_lr = eta * update
next_param = param - update_with_lr
assignments.extend(
[param.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
return tf.group(*assignments, name=name)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
class NadamWeightDecayOptimizer(tf.compat.v1.train.Optimizer):
"""
Optimizer that implements the Nadam algorithm. Nadam is Adam with
Nesterov momentum.
A basic Nadam optimizer that includes "correct" L2 weight decay.
References
See [Dozat, T., 2015](http://cs229.stanford.edu/proj2015/054_report.pdf).
https://github.com/tdozat/Optimization/blob/master/tensorflow/nadam.py
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Nadam
"""
def __init__(self,
learning_rate,
weight_decay_rate=0.00,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
name="NadamWeightDecayOptimizer"):
"""Constructs a NadamWeightDecayOptimizer."""
super(NadamWeightDecayOptimizer, self).__init__(False, name)
self.learning_rate = tf.identity(learning_rate, name='learning_rate')
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""See base class."""
assignments = []
# get the local step
steps = tf.cast(global_step, tf.float32) + 1.
for (grad, param) in grads_and_vars:
if grad is None or param is None:
continue
param_name = self._get_variable_name(param.name)
m = tf.compat.v1.get_variable(
name=param_name + "/nadam_m",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
v = tf.compat.v1.get_variable(
name=param_name + "/nadam_v",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
# Standard Adam update.
next_m = (tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
next_v = (tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2, tf.square(grad)))
# We could use momentum scheduling variable
# mu_t = self.beta_1 * (1. - 0.5 * (0.96**(0.004*steps)))
# instead we use constant scheduling so mu_t = self_beta1
beta1_correction = 1./(1. - (self.beta_1 ** steps))
beta1_correction_tp1 = 1./(1. - (self.beta_1 ** (steps+1)))
beta2_correction = 1./(1. - (self.beta_2 ** steps))
next_m_unbiased = tf.multiply(beta1_correction_tp1,next_m)
next_v_unbiased = tf.multiply(beta2_correction,next_v)
# Nesterov addition moment calculation
next_m_nesterov = (tf.multiply(self.beta_1, next_m_unbiased) + tf.multiply((1.0-self.beta_1)*beta1_correction,grad))
update = next_m_nesterov / (tf.sqrt(next_v_unbiased) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += self.weight_decay_rate * param
update_with_lr = self.learning_rate * update
next_param = param - update_with_lr
assignments.extend(
[param.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
return tf.group(*assignments, name=name)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
class NlambOptimizer(tf.compat.v1.train.Optimizer):
"""
Optimizer that implements the NLAMB algorithm. Nlamb is Lamb with
Nesterov momentum.
A basic Nlamb optimizer that includes "correct" L2 weight decay.
References
See [Dozat, T., 2015](http://cs229.stanford.edu/proj2015/054_report.pdf).
https://github.com/tdozat/Optimization/blob/master/tensorflow/nadam.py
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Nadam
"""
def __init__(self,
learning_rate,
weight_decay_rate=0.00,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
name="NlambOptimizer"):
"""Constructs a NlamOptimizer."""
super(NlambOptimizer, self).__init__(False, name)
self.learning_rate = tf.identity(learning_rate, name='learning_rate')
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""See base class."""
assignments = []
# get the local step
steps = tf.cast(global_step, tf.float32) + 1.
for (grad, param) in grads_and_vars:
if grad is None or param is None:
continue
param_name = self._get_variable_name(param.name)
m = tf.compat.v1.get_variable(
name=param_name + "/nlamb_m",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
v = tf.compat.v1.get_variable(
name=param_name + "/nlamb_v",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
# Standard Adam update.
next_m = (
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
next_v = (
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
tf.square(grad)))
beta1_correction = 1./(1. - (self.beta_1 ** steps))
beta1_correction_tp1 = 1./(1. - (self.beta_1 ** (steps+1)))
beta2_correction = 1./(1. - (self.beta_2 ** steps))
next_m_unbiased = tf.multiply(beta1_correction_tp1,next_m)
next_v_unbiased = tf.multiply(beta2_correction,next_v)
# Nesterov addition moment calculation
next_m_nesterov = (tf.multiply(self.beta_1, next_m_unbiased) + tf.multiply((1.0-self.beta_1)*beta1_correction,grad))
update = next_m_nesterov / (tf.sqrt(next_v_unbiased) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += self.weight_decay_rate * param
############## BELOW ARE THE SPECIFIC PARTS FOR LAMB ##############
# Note: Here are two choices for scaling function \phi(z)
# minmax: \phi(z) = min(max(z, \gamma_l), \gamma_u)
# identity: \phi(z) = z
# The authors does not mention what is \gamma_l and \gamma_u
# UPDATE: after asking authors, they provide me the code below.
# ratio = array_ops.where(math_ops.greater(w_norm, 0), array_ops.where(
# math_ops.greater(g_norm, 0), (w_norm / g_norm), 1.0), 1.0)
r1 = tf.sqrt(tf.reduce_sum(tf.square(param)))
r2 = tf.sqrt(tf.reduce_sum(tf.square(update)))
r = tf.where(tf.greater(r1, 0.0), tf.where(
tf.greater(r2, 0.0), r1/r2, 1.0), 1.0)
eta = self.learning_rate * r
update_with_lr = eta * update
next_param = param - update_with_lr
assignments.extend(
[param.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
return tf.group(*assignments, name=name)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name