-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_denoising_Flickr.py
73 lines (57 loc) · 2.76 KB
/
test_denoising_Flickr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import cv2
import torch
import numpy as np
import lpips
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
from SGDFormer import SGDFormer
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
torch.backends.cudnn.benchmark = False
def add_noise(src, alpha, sigma):
if not alpha == 0:
src = alpha * np.random.poisson(src / alpha).astype(float)
noise = np.random.normal(0, sigma, src.shape)
src = src + noise
src = np.clip(src, 0, 1.0)
return src
def main():
# Set Noise Level
alpha = 0.02
sigma = 0.2
# Load model
local_range = 5 # the window size of neighboorhood attention in the NRCA module
trans_num = 1 # the number of transformer block
model = SGDFormer(img_channel = 1, width = 32, max_disp = 128, local_range = local_range, trans_num = trans_num).cuda()
model.load_state_dict(torch.load('ckpt/SGDFormer-Flickr.pth'))
model.eval()
lpfunc = lpips.LPIPS(net='vgg').cuda()
# Load Image - Flickr1024
target_img = cv2.imread('examples/Flickr/001_target.png').astype('float') / 255.0
guidance_img = cv2.imread('examples/Flickr/001_guidance.png').astype('float') / 255.0
# Add Noise
noisy_img = add_noise(target_img, alpha, sigma)
noisy_img = np.clip(noisy_img, 0, 1.0)
# Convert Images Into Tensors
target_img = torch.from_numpy(np.ascontiguousarray(target_img)).permute(2, 0, 1).float().unsqueeze(0).cuda()
guidance_img = torch.from_numpy(np.ascontiguousarray(guidance_img)).permute(2, 0, 1).float().unsqueeze(0).cuda()
noisy_img = torch.from_numpy(np.ascontiguousarray(noisy_img)).permute(2, 0, 1).float().unsqueeze(0).cuda()
# Start Denoising
with torch.no_grad():
denoised_img = model(noisy_img.permute(1,0,2,3), guidance_img.permute(1,0,2,3)).permute(1,0,2,3)
denoised_img = torch.clamp(denoised_img, 0, 1.0)
# Compute PSNR, SSIM, & LPIPS
lpips_value = lpfunc(denoised_img, target_img).item()
denoised_img = denoised_img.squeeze().permute(1, 2, 0).detach().cpu().numpy()
target_img = target_img.squeeze().permute(1, 2, 0).detach().cpu().numpy()
noisy_img = noisy_img.squeeze().permute(1, 2, 0).detach().cpu().numpy()
psnr_value = psnr(denoised_img, target_img)
ssim_value = ssim(denoised_img, target_img, channel_axis=2)
print('==========================================================================')
print('PSNR={}, SSIM={}, LPIPS={}'.format(psnr_value, ssim_value, lpips_value))
print('==========================================================================')
# Save Images
cv2.imwrite('results/001_flickr_res.png', np.uint8(denoised_img * 255))
cv2.imwrite('results/001_flickr_noisy.png', np.uint8(noisy_img * 255))
if __name__ == "__main__":
main()