-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMotionProfile.cpp
109 lines (94 loc) · 3.11 KB
/
MotionProfile.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#include "MotionProfile.h"
#include <math.h>
#include <assert.h>
#include "DebugUtil.h"
MotionProfile::MotionProfile()
{
times.clear();
values.clear();
time_scale = 1;
value_scale = 1;
}
void MotionProfile::AddPoint(double time, double value)
{
if(!times.empty()){
double last_time = times[times.size() - 1];
if(time > last_time){
DPRINTF("Added point: (%2.2f,%2.2f)\n", time, value);
times.push_back(time);
values.push_back(value);
}
}else
{
DPRINTF("Added point: (%2.2f,%2.2f)\n", time, value);
times.push_back(time);
values.push_back(value);
}
}
void MotionProfile::SetTimeScale(double scale)
{
time_scale = scale;
}
void MotionProfile::SetValueScale(double scale)
{
value_scale = scale;
}
double MotionProfile::GetInterpolatedValue(double time)
{
int first_idx = -1;
int second_idx = -1;
int current = 0;
double interpolate = 0;
double normalized_time = time / time_scale;
for(int i = 0; i < (int)times.size(); i++){
if(times[i] <= normalized_time) first_idx = i;
if(times[times.size()-1-i] >= normalized_time) second_idx = times.size()-1-i;
}
if (first_idx == -1) { // We didn't find a "first" time
DPRINTF("First special case encountered, we are before the first point.\n", NULL);
first_idx = 0; // Assume we are before the first point, set it to 0
}
if (second_idx == -1) {
DPRINTF("Second special case encountered, we are after the last point.\n", NULL);
second_idx = times.size() - 1;
}
if(first_idx == second_idx) interpolate = values[first_idx];
else{
double time_difference = times[second_idx] - times[first_idx];
double mu = (normalized_time - times[first_idx]) / time_difference;
interpolate = (values[first_idx]*(1-mu)+values[second_idx]*mu);
}
DPRINTF("first = %d\tsecond = %d\n", first_idx, second_idx);
assert(abs(first_idx - second_idx) <= 1);
return interpolate*value_scale;
}
double MotionProfile::GetCosineInterpolatedValue(double time)
{
int first_idx = -1;
int second_idx = -1;
int current = 0;
double interpolate = 0;
double normalized_time = time / time_scale;
for(int i = 0; i < (int)times.size(); i++){
if(times[i] <= normalized_time) first_idx = i;
if(times[times.size()-1-i] >= normalized_time) second_idx = times.size()-1-i;
}
if (first_idx == -1) { // We didn't find a "first" time
DPRINTF("First special case encountered, we are before the first point.\n", NULL);
first_idx = 0; // Assume we are before the first point, set it to 0
}
if (second_idx == -1) {
DPRINTF("Second special case encountered, we are after the last point.\n", NULL);
second_idx = times.size() - 1;
}
if(first_idx == second_idx) interpolate = values[first_idx];
else{
double time_difference = times[second_idx] - times[first_idx];
double mu = (normalized_time - times[first_idx]) / time_difference;
double mu2 = (1.0-cos(mu*3.14159))/2.0;
interpolate = (values[first_idx]*(1-mu2)+values[second_idx]*mu2);
}
DPRINTF("first = %d\tsecond = %d\n", first_idx, second_idx);
assert(abs(first_idx - second_idx) <= 1);
return interpolate*value_scale;
}