-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpirod.py
115 lines (96 loc) · 2.58 KB
/
pirod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import math
#constants
a=0.005
L=0.99
h=1
D=1.5
sigma0=1/160
I=500
N=5
#Axes for plot
xmin=-5
xmax=5
Nx=100
dx=(xmax-xmin)/Nx
X=np.linspace(xmin,xmax,Nx)
#length of pieces
Dl1=L/N*np.ones(N)
Dl2=D/N*np.ones(N)
Dl3=L/N*np.ones(N)
Dl=np.concatenate((Dl1,Dl2,Dl3))
#x coordinate of start of pieces (approximate, ignoring a)
x1=np.ones(N)*(-D/2)
x3=np.ones(N)*(D/2)
x2=np.linspace(-D/2,D/2,N+1)
x=np.concatenate((x1,x2,x3))
#x coordinate of center of pieces
xx1=np.zeros(N)
xx2=np.zeros(N)
xx3=np.zeros(N)
for i in range(0,N):
xx1[i]=0.5*(x[i]+x[i+1])
xx2[i]=0.5*(x[i+N]+x[i+1+N])
xx3[i]=0.5*(x[i+2*N]+x[i+1+2*N])
xx=np.concatenate((xx1,xx2,xx3))
#z coordinate of start of pieces (approximate, ignoring a)
z1=np.linspace(-h-L,-h,N+1)
z3=np.linspace(-h,-h-L,N+1)
z2=np.ones(N-1)*(-h)
z=np.concatenate((z1,z2,z3))
#z coordinate of center of pieces
zz1=np.zeros(N)
zz2=np.zeros(N)
zz3=np.zeros(N)
for i in range(0,N):
zz1[i]=0.5*(z[i]+z[i+1])
zz2[i]=0.5*(z[i+N]+z[i+1+N])
zz3[i]=0.5*(z[i+2*N]+z[i+1+2*N])
zz=np.concatenate((zz1,zz2,zz3))
#VDF matrix
VDF=np.zeros((3*N,3*N))
for i in range(0,3*N):
for j in range(0,3*N):
if i==j:
R1=Dl[i]/2+np.sqrt(a**2+(Dl[i]/2)**2)
R2=-Dl[i]/2+np.sqrt(a**2+(Dl[i]/2)**2)
Riim=abs(2*zz[i])
VDF[i][j]=(np.log(R1/R2)+Dl[i]/Riim)/(4*math.pi*sigma0)
else:
R1=np.sqrt((zz[i]-zz[j])**2+(xx[i]-xx[j])**2)
R2=np.sqrt((zz[i]+zz[j])**2+(xx[i]-xx[j])**2)
VDF[i][j]=Dl[j]*(1/R1+1/R2)/(4*math.pi*sigma0)
#charge at each piece
I0=np.dot(np.linalg.inv(VDF),np.ones(3*N))
Itot=0
for i in range (0, 3*N):
Itot=Itot+I0[i]*Dl[i]
Ic=np.multiply(I0,I/Itot)
#potential of rod and ground resistance
phi_rod=I/Itot
Rg=phi_rod/I
#potential at ground level
def potential(x):
res=0
for i in range(0,3*N):
R=np.sqrt((x-xx[i])**2+zz[i]**2)
res=res+Ic[i]*Dl[i]*2/R
return res/(4*math.pi*sigma0)
phi=potential(X)
phi0=potential(0)
print('For N={}:\nPotential at the rod: {}\nGround resistance: {}\nPotential at (0,0,0): {}'.format(N,phi_rod, Rg, phi0))
#plots
fig1, ax1 = plt.subplots()
potplot=ax1.plot(X,phi)
ax1.set_title('Electric potential Φ at ground level (y=0, z=0)\n for N={}'.format(N))
ax1.set_xlabel('x(m)')
ax1.set_ylabel('Φ')
fig2,ax2=plt.subplots()
iplot=ax2.plot(Ic)
ax2.set_title('Current $I_c$ at each piece of the conductor\nfor N={}'.format(N))
ax2.set_xlabel('Piece number (from bottom left to bottom right)')
ax2.set_ylabel('$I_c$')
plt.show()