-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmagndisk.py
116 lines (101 loc) · 2.66 KB
/
magndisk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import math
#constants
a=1
M0=1
levels=2.7*np.linspace(-0.9,0.9,num=18)
#Axes
N=100
xmin=-3*a
xmax=3*a
xx=np.linspace(xmin,xmax,N)
ymin=-3*a
ymax=3*a
yy=np.linspace(ymin,ymax,N)
X,Y=np.meshgrid(xx,yy)
#function for Az
def Az(x,y):
r=np.sqrt(x**2+y**2)
theta=np.arctan2(y,x)
phimin=0
phimax=2*math.pi
Nphi=200
dphi=(phimax-phimin)/Nphi
phi=np.linspace(phimin,phimax,Nphi)
res=0
for i in phi:
res+=dphi*np.cos(i)*np.log(a/np.sqrt(r**2+a**2-2*r*a*np.cos(theta-i)))
return -a*res
#functions for B
def Bx(x,y):
r=np.sqrt(x**2+y**2)
theta=np.arctan2(y,x)
phimin=0
phimax=2*math.pi
Nphi=200
dphi=(phimax-phimin)/Nphi
phi=np.linspace(phimin,phimax,Nphi)
res=0
for i in phi:
res+=dphi*np.cos(i)*(y-a*np.sin(i))/(r**2+a**2-2*r*a*np.cos(theta-i))
return a*M0*res/(2*math.pi)
def By(x,y):
r=np.sqrt(x**2+y**2)
theta=np.arctan2(y,x)
phimin=0
phimax=2*math.pi
Nphi=200
dphi=(phimax-phimin)/Nphi
phi=np.linspace(phimin,phimax,Nphi)
res=0
for i in phi:
res+=dphi*np.cos(i)*(x-a*np.cos(i))/(r**2+a**2-2*r*a*np.cos(theta-i))
return -a*M0*res/(2*math.pi)
#functions for H
def Hx(x,y):
return Bx(x,y)
def Hy(x,y):
r=np.sqrt(x**2+y**2)
condlist=[r<a,r>a]
choicelist=[By(x,y)-M0,By(x,y)]
return np.select(condlist,choicelist)
#PLOTS
#surface plot of Az
fig1,ax1=plt.subplots()
p1=ax1.pcolormesh(X,Y,Az(X,Y))
ax1.set_aspect('equal','box')
ax1.set_title('Normalised Magnetic Potential $A_z$(y,z)/($M_0μ_0$/2π)')
cb1=fig1.colorbar(p1)
ax1.set_xlabel('x(m)')
ax1.set_ylabel('y(m)')
#contour lines of Az
fig2,ax2=plt.subplots()
p2=ax2.contour(X,Y,Az(X,Y),levels)
ax2.clabel(p2, inline=True, fontsize=7)
c2=plt.Circle((0,0),a,fill=False)
ax2.add_artist(c2)
ax2.set_aspect('equal','box')
ax2.set_title('Normalised Magnetic Potential $A_z$(x,y)/($M_0μ_0$/2π)')
ax2.set_xlabel('x(m)')
ax2.set_ylabel('y(m)')
#streamplot of B
fig3,ax3=plt.subplots()
p3=ax3.streamplot(X,Y,Bx(X,Y),By(X,Y),density=1.2,color=np.log10(np.sqrt(Bx(X,Y)**2+By(X,Y)**2)),cmap=cm.gist_heat)
c3=plt.Circle((0,0),a,fill=False)
ax3.add_artist(c3)
ax3.set_aspect('equal','box')
ax3.set_title('Normalised Magnetic Induction B(x,y)/$μ_0$')
ax3.set_xlabel('x(m)')
ax3.set_ylabel('y(m)')
#streamplot of H
fig4,ax4=plt.subplots()
p4=ax4.streamplot(X,Y,Hx(X,Y),Hy(X,Y),density=1.2,color=np.log10(np.sqrt(Hx(X,Y)**2+Hy(X,Y)**2)),cmap=cm.gist_heat)
c4=plt.Circle((0,0),a,fill=False)
ax4.add_artist(c4)
ax4.set_aspect('equal','box')
ax4.set_title('Magnetic Field H(x,y)')
ax4.set_xlabel('x(m)')
ax4.set_ylabel('y(m)')
plt.show()