-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathelefield.py
154 lines (128 loc) · 3.83 KB
/
elefield.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import math
#constants
a=10
b=5
d=3
L=3
D=2.5
V0=1
e0=8.8*(10**(-12))
levels=np.array([0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.25, 2, 3, 5])
#Axes
ymin=-15
ymax=15
zmin=-15
zmax=15
N=400
dy=(ymax-ymin)/N
dz=(zmax-zmin)/N
yy=np.arange(ymin,ymax,dy)
zz=np.arange(zmin,zmax,dz)
Y,Z=np.meshgrid(yy,zz)
#utility function to calculate potential inside the cavity
def inside_cavity(y,z):
thetamin=-L/d
thetamax=L/d
Ni=200
dtheta=(thetamax-thetamin)/Ni
theta=np.arange(thetamin,thetamax,dtheta)
int1=0
int2=0
dd=(b**2)/d
for i in theta:
int1=int1+dtheta/np.sqrt((y-d*np.sin(i))**2+(z-d*np.cos(i)-D)**2)
int2=int2+dtheta/np.sqrt((y-dd*np.sin(i))**2+(z-dd*np.cos(i)-D)**2)
return d*int1-b*int2+V0
#electric potential function
#since I am mapping just the yz plane I'm keeping x=0 for code simplicity
def potential(y,z):
r=np.sqrt(y**2+z**2)
rT=np.sqrt(y**2+(z-D)**2)
condlist=[rT<=b,np.logical_and(r<=a,rT>b),r>a]
choicelist=[inside_cavity(y,z), V0, V0*a/r]
return np.select(condlist,choicelist)
phi=potential(Y, Z)
#utility funtions to calculate the electric field inside the cavity
def Ey_inside_cavity(y,z):
thetamin=-L/d
thetamax=L/d
Ni=200
dtheta=(thetamax-thetamin)/Ni
theta=np.arange(thetamin,thetamax,dtheta)
int1=0
int2=0
dd=(b**2)/d
for i in theta:
int1=int1+dtheta*(y-d*np.sin(i))/(np.sqrt((y-d*np.sin(i))**2+(z-d*np.cos(i)-D)**2))**3
int2=int2+dtheta*(y-dd*np.sin(i))/(np.sqrt((y-dd*np.sin(i))**2+(z-dd*np.cos(i)-D)**2))**3
return d*int1-b*int2
def Ez_inside_cavity(y,z):
thetamin=-L/d
thetamax=L/d
Ni=200
dtheta=(thetamax-thetamin)/Ni
theta=np.arange(thetamin,thetamax,dtheta)
int1=0
int2=0
dd=(b**2)/d
for i in theta:
int1=int1+dtheta*(z-d*np.cos(i)-D)/(np.sqrt((y-d*np.sin(i))**2+(z-d*np.cos(i)-D)**2))**3
int2=int2+dtheta*(z-dd*np.cos(i)-D)/(np.sqrt((y-dd*np.sin(i))**2+(z-dd*np.cos(i)-D)**2))**3
return d*int1-b*int2
#functions for electric field
def Ey_func(y,z):
r=np.sqrt(y**2+z**2)
rT=np.sqrt(y**2+(z-D)**2)
condlist=[rT<b,np.logical_and(r<=a,rT>=b),r>a]
choicelist=[Ey_inside_cavity(y,z), 0, V0*a*y/((r)**3)]
return np.select(condlist,choicelist)
def Ez_func(y,z):
r=np.sqrt(y**2+z**2)
rT=np.sqrt(y**2+(z-D)**2)
condlist=[rT<b,np.logical_and(r<=a,rT>=b),r>a]
choicelist=[Ez_inside_cavity(y,z), 0, V0*a*z/((r)**3)]
return np.select(condlist,choicelist)
Ey=Ey_func(Y,Z)
Ez=Ez_func(Y,Z)
def density(i):
y=b*np.sin(i)
z=b*np.cos(i)+D
rb=np.sqrt(y**2+(z-D)**2)
return -e0*(y*Ey_func(y,z)+(z-D)*Ez_func(y,z))/rb
th=np.linspace(0,2*math.pi,10000)
sigma=density(th)
#contour lines of potential
fig1, ax1 = plt.subplots()
CS = ax1.contour(Y,Z,phi,levels)
ax1.clabel(CS, inline=True, fontsize=7)
ax1.set_aspect('equal','box')
ax1.set_title('Normalised Electric Potential Φ(y,z)/(λ/4*pi*e0) on yz plane')
ax1.set_xlabel('y(m)')
ax1.set_ylabel('z(m)')
#surface plot of potential
fig2,ax2=plt.subplots()
ss=ax2.pcolormesh(Y,Z,phi,cmap=cm.jet)
ax2.set_aspect('equal','box')
ax2.set_title('Normalised Electric Potential Φ(y,z)/(λ/4*pi*e0)')
cb=fig2.colorbar(ss)
ax2.set_xlabel('y(m)')
ax2.set_ylabel('z(m)')
#streamplot of field + light coloured contour lines
fig3,ax3=plt.subplots()
CS=ax3.contour(Y,Z,phi,levels,cmap=cm.Reds)
q=ax3.streamplot(Y,Z,Ey,Ez,density=2.5)
ax3.set_aspect('equal','box')
ax3.set_title('Electric Field in the yz plane')
ax3.set_xlabel('y(m)')
ax3.set_ylabel('z(m)')
#plot of charge density
fig4, ax4 = plt.subplots()
ax4.plot(th,sigma,'.')
ax4.set_title('Charge density of cavity border in yz plane')
ax4.set_xlabel('Polar angle theta (radians)')
ax4.set_ylabel('Charge density sigma')
plt.show()