-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdielrod.py
141 lines (115 loc) · 4.51 KB
/
dielrod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import math
#constants
L=0.5
h=0.5
levels=np.array([0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5])
#Axes
xmin=-2
xmax=2
zmin=-2
zmax=2
N=403
dx=(xmax-xmin)/N
dz=(zmax-zmin)/N
xx=np.arange(xmin,xmax,dx)
zz=np.arange(zmin,zmax,dz)
X,Z=np.meshgrid(xx,zz)
#functions to calculate potential
def phi_term1(x,z):
R1=np.sqrt((x-L)**2+(z-h)**2)
R2=np.sqrt((x+L)**2+(z-h)**2)
return np.log((x-L+R1)/(x+L+R2))
def phi_term2(x,z):
R3=np.sqrt((x-L)**2+(z+h)**2)
R4=np.sqrt((x+L)**2+(z+h)**2)
return np.log((x-L+R3)/(x+L+R4))
def potential1(x,z):
condlist=[z>=0,z<0]
choicelist=[phi_term1(x,z)/(4*math.pi)-2*phi_term2(x,z)/(12*math.pi),phi_term1(x,z)/(12*math.pi)]
return np.select(condlist,choicelist)
def potential2(x,z):
condlist=[z>=0,z<0]
choicelist=[phi_term1(x,z)/(20*math.pi)+2*phi_term2(x,z)/(60*math.pi),phi_term1(x,z)/(12*math.pi)]
return np.select(condlist,choicelist)
phi1=potential1(X,Z)
phi2=potential2(X,Z)
#functions to calculate electric field
def electric_field_term1(x,z):
R1=np.sqrt((x-L)**2+(z-h)**2)
R2=np.sqrt((x+L)**2+(z-h)**2)
return (x-L)/(R1*((z-h)**2))-(x+L)/(R2*((z-h)**2))
def electric_field_term2(x,z):
R3=np.sqrt((x-L)**2+(z+h)**2)
R4=np.sqrt((x+L)**2+(z+h)**2)
return (x-L)/(R3*((z+h)**2))-(x+L)/(R4*((z+h)**2))
def Ex_func1(x,z):
condlist=[z>=0,z<0]
choicelist=[x*electric_field_term1(x,z)/(4*math.pi)-2*x*electric_field_term2(x,z)/(12*math.pi),x*electric_field_term1(x,z)/(12*math.pi)]
return np.select(condlist,choicelist)
def Ex_func2(x,z):
condlist=[z>=0,z<0]
choicelist=[x*electric_field_term1(x,z)/(20*math.pi)+2*x*electric_field_term2(x,z)/(60*math.pi),x*electric_field_term1(x,z)/(12*math.pi)]
return np.select(condlist,choicelist)
def Ez_func1(x,z):
condlist=[z>=0,z<0]
choicelist=[(z-h)*electric_field_term1(x,z)/(4*math.pi)-2*(z+h)*electric_field_term2(x,z)/(12*math.pi),(z-h)*electric_field_term1(x,z)/(12*math.pi)]
return np.select(condlist,choicelist)
def Ez_func2(x,z):
condlist=[z>=0,z<0]
choicelist=[(z-h)*electric_field_term1(x,z)/(20*math.pi)+2*(z+h)*electric_field_term2(x,z)/(60*math.pi),(z-h)*electric_field_term1(x,z)/(12*math.pi)]
return np.select(condlist,choicelist)
Ex1=Ex_func1(X,Z)
Ex2=Ex_func2(X,Z)
Ez1=Ez_func1(X,Z)
Ez2=Ez_func2(X,Z)
#PLOTS
#contour lines of potential
fig1, ax1 = plt.subplots()
CS1 = ax1.contour(X,Z,-phi1,levels)
ax1.clabel(CS1, inline=True, fontsize=7)
ax1.set_aspect('equal','box')
ax1.set_title('Normalised Electric Potential Φ(x,z)/(λ/$ε_0$) on xz plane\nfor $ε_1$=$ε_0$ and $ε_2$=5$ε_0$')
ax1.set_xlabel('x(m)')
ax1.set_ylabel('z(m)')
fig2, ax2 = plt.subplots()
CS2 = ax2.contour(X,Z,-phi2,levels)
ax2.clabel(CS2, inline=True, fontsize=7)
ax2.set_aspect('equal','box')
ax2.set_title('Normalised Electric Potential Φ(x,z)/(λ/$ε_0$) on xz plane\nfor $ε_1$=5$ε_0$ and $ε_2$=$ε_0$')
ax2.set_xlabel('x(m)')
ax2.set_ylabel('z(m)')
#surface plot of potential
fig3, ax3 = plt.subplots()
s3=ax3.pcolormesh(X,Z,-phi1,cmap=cm.jet)
ax3.set_aspect('equal','box')
ax3.set_title('Normalised Electric Potential Φ(x,z)/(λ/$ε_0$) on xz plane\nfor $ε_1$=$ε_0$ and $ε_2$=5$ε_0$')
cb3=fig3.colorbar(s3)
ax3.set_xlabel('x(m)')
ax3.set_ylabel('z(m)')
fig4, ax4 = plt.subplots()
s4=ax4.pcolormesh(X,Z,-phi2,cmap=cm.jet)
ax4.set_aspect('equal','box')
ax4.set_title('Normalised Electric Potential Φ(x,z)/(λ/$ε_0$) on xz plane\nfor $ε_1$=5$ε_0$ and $ε_2$=$ε_0$')
cb4=fig4.colorbar(s4)
ax4.set_xlabel('x(m)')
ax4.set_ylabel('z(m)')
# strpoints=np.array([[-0.51,-0.42,-0.3,-0.19,-0.08,0.001,0.001,0.08,0.19,0.3,0.42,0.51,-0.51,-0.42,-0.3,-0.19,-0.08,0.001,0.001,0.08,0.19,0.3,0.42,0.51],[0.53,0.55,0.55,0.57,0.57,0.57,0.55,0.51,0.55,0.55,0.53,0.53,0.47,0.47,0.47,0.45,0.45,0.43,0.43,0.43,0.47,0.47,0.47,0.47]])
fig5,ax5=plt.subplots()
CS5=ax5.contour(X,Z,-phi1,levels,cmap=cm.autumn)
sl5=ax5.streamplot(X,Z,-Ex1,-Ez1,color=np.log10(np.sqrt(Ex1**2+Ez1**2)),cmap=cm.gnuplot2,density=1.2)
ax5.set_aspect('equal','box')
ax5.set_title('Electric Field on xz plane\nfor $ε_1$=$ε_0$ and $ε_2$=5$ε_0$')
ax5.set_xlabel('y(m)')
ax5.set_ylabel('z(m)')
fig6,ax6=plt.subplots()
CS6=ax6.contour(X,Z,-phi2,levels,cmap=cm.autumn)
sl6=ax6.streamplot(X,Z,-Ex2,-Ez2,color=np.log10(np.sqrt(Ex1**2+Ez1**2)),cmap=cm.gnuplot2,density=1.2)
ax6.set_aspect('equal','box')
ax6.set_title('Electric Field on xz plane\nfor $ε_1$=5$ε_0$ and $ε_2$=$ε_0$')
ax6.set_xlabel('y(m)')
ax6.set_ylabel('z(m)')
plt.show()