-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathCNEu.py
42 lines (33 loc) · 1.52 KB
/
CNEu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 18 03:36:40 2017
@author: Quintus
"""
import numpy as np
import scipy.linalg as linalg
from ExplicitEu import ExplicitEu
class CNEu(ExplicitEu):
def _setup_coefficients_(self):
self.alpha = 0.25*self.dt * (self.sigma**2 * self.iValues**2 - self.r * self.iValues)
self.beta = -0.5*self.dt * (self.sigma**2 * self.iValues**2 + self.r)
self.gamma = 0.25*self.dt * (self.sigma**2 * self.iValues**2 + self.r * self.iValues)
self.coeffs = np.diag(self.alpha[1:], -1) + \
np.diag(1 + self.beta) + \
np.diag(self.gamma[:-1], 1)
self.coeffs_ = np.diag(-self.alpha[1:], -1) + \
np.diag(1 - self.beta) + \
np.diag(-self.gamma[:-1], 1)
def _setup_boundary_conditions_(self):
super(CNEu, self)._setup_boundary_conditions_()
self.coeffs_[0, 0] -= 2*self.alpha[0]
self.coeffs_[0, 1] += self.alpha[0]
self.coeffs_[-1, -1] -= 2*self.gamma[-1]
self.coeffs_[-1, -2] += self.gamma[-1]
def _traverse_grid_(self):
P, L, U = linalg.lu(self.coeffs_)
for j in reversed(self.jValues):
Ux = linalg.solve(L, np.dot(self.coeffs, self.grid[1:-1, j+1]))
self.grid[1:-1, j] = linalg.solve(U, Ux)
self.grid[0, j] = 2 * self.grid[1, j] - self.grid[2, j]
self.grid[-1, j] = 2 * self.grid[-2, j] - self.grid[-3, j]