-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrp_dyn.py
129 lines (96 loc) · 4.68 KB
/
rp_dyn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from spin_sim_src import *
import pickle as pickle
if __name__ == "__main__":
print("This is main.py\n")
# run: python <filename>.py <unique_number> <tfinal> <timesteps> <B0_start> <B0_stop> <B_steps>
# <theta_start> <theta_stop> <theta_steps>
#
# theta is in units of pi
#
# for example: python cluster_do_colorplot.py 001 0.5e-3 500 0 1000e-6 100 0 1 100
# transform command line arguments into the parameters
unique_number = np.float(sys.argv[1])
tfinal = np.float(sys.argv[2])
timesteps = np.int(sys.argv[3])
B_start = np.float(sys.argv[4])
B_stop = np.float(sys.argv[5])
B_steps = np.int(sys.argv[6])
theta_start = np.float(sys.argv[7]) * np.pi
theta_stop = np.float(sys.argv[8]) * np.pi
theta_steps = np.int(sys.argv[9])
# B0 = 47e-6 #T, B field of Earth at Frankfurt
# theta = np.pi/4.0 #inclination of B field wrt to axis of RP, [0,pi]
phi = 0. * np.pi / 1.0 # azimuth of B field, , [0,2*pi]
mu0h = 9.274e-24 / 6.6e-34 # mu0 / h, 1/(T*s)
a = [0., 0., 0.]
a[0] = mu0h * 0.345e-4 # 0.345G given by PRE ; ax is now in Hz
a[1] = mu0h * 0.345e-4 # 0.345G given by PRE ; ay is now in Hz
a[2] = mu0h * 9e-4 # 9G given by PRE ; az is now in Hz
# "Biologically feasible regime of HF strengths, 0.1 to 10G, see ref 26 in PRE"
k = [0., 0., 0., 0.]
k[0] = 2e4 # Hz, rate of decay into |S>
k[1] = 2e4 # Hz, rate of decay into |T->
k[2] = 2e4 # Hz, rate of decay into |T0>
k[3] = 2e4 # Hz, rate of decay into |T+>
# time array to simulate
tinit = 0.0
# tfinal = 1.0e-3
# notimepoints = 1000.0
times = np.linspace(tinit, tfinal, timesteps) # in seconds
timedetail = (tfinal - tinit) / timesteps
# time zero is creation of RP
num_states = 12
# preparing the initial density matrices for various scenarios
rho0_vectors, rho0_description = prep_ini_state()
# adding dimensions to rho0 to account for the shelving states
rho0 = rho_add_dim(total_num_states=num_states, rho0_vector=rho0_vectors[1])
# coupling to bath or decay operators
c_op_list = []
P1 = 1.0 / np.sqrt(2.0) * basis(num_states, 8) * (basis(num_states, 2).dag() - basis(num_states, 4).dag())
P2 = 1.0 / np.sqrt(2.0) * basis(num_states, 8) * (basis(num_states, 3).dag() - basis(num_states, 5).dag())
P3 = 1.0 / np.sqrt(2.0) * basis(num_states, 10) * (basis(num_states, 2).dag() + basis(num_states, 4).dag())
P4 = 1.0 / np.sqrt(2.0) * basis(num_states, 10) * (basis(num_states, 3).dag() + basis(num_states, 5).dag())
P5 = basis(num_states, 11) * basis(num_states, 0).dag()
P6 = basis(num_states, 11) * basis(num_states, 1).dag()
P7 = basis(num_states, 9) * basis(num_states, 6).dag()
P8 = basis(num_states, 9) * basis(num_states, 7).dag()
c_op_list.append(np.sqrt(k[0]) * P1)
c_op_list.append(np.sqrt(k[0]) * P2)
c_op_list.append(np.sqrt(k[1]) * P3)
c_op_list.append(np.sqrt(k[1]) * P4)
c_op_list.append(np.sqrt(k[2]) * P5)
c_op_list.append(np.sqrt(k[2]) * P6)
c_op_list.append(np.sqrt(k[3]) * P7)
c_op_list.append(np.sqrt(k[3]) * P8)
ex_op_list = []
# define the arrays to calculate the B-field and the theta angles
do_log_bfield_scan = False
if do_log_bfield_scan:
B0_arr = np.logspace(np.log10(B_start), np.log10(B_stop), B_steps) # in T, 100 is usual
else:
B0_arr = np.linspace(B_start, B_stop, B_steps) # in T, 100 is usual
theta_arr = np.linspace(theta_start, theta_stop, theta_steps) # rad, 100 is usual
result_S = []
result_S_formula = []
# pops_tot = np.zeros([len(B0_arr), len(theta_arr), len(times), number_of_states])
pops_tot = np.zeros([len(B0_arr), len(theta_arr), num_states])
l0 = 0
for B0 in B0_arr:
l1 = 0
print("B-field = " + str(B0))
for theta in theta_arr:
print(" Theta = " + str(theta))
# building the Hamiltonian
h = build_Hamiltonian(a, B0, theta, phi)
# adding the shelving states as additional dimensions to the Hamiltonian
H = hamiltonian_add_dim(total_num_states=num_states, hamiltonian=h)
SYend, SYform, pops = time_evol(H, rho0, num_states, times, timesteps, timedetail, k, c_op_list, ex_op_list)
result_S.append(SYend)
result_S_formula.append(SYform)
# pops_tot[l0,l1,:,:] = pops
pops_tot[l0, l1, :] = pops[-1, :] # only save the last time point
l1 += 1
l0 += 1
pickle.dump([result_S, result_S_formula, pops_tot, B0_arr, theta_arr, phi, a[0], a[1], a[2], k[0], k[1], tfinal,
timedetail, rho0], open("Data_" + rho0_description[1] + ".p", "wb"))
print("Done.")