-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
288 lines (257 loc) · 7.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import sys
curdir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, os.path.dirname(curdir))
prodir = ".."
sys.path.insert(0, prodir)
import pickle as pkl
import logging
import argparse
import random
from CEM.tf_models.mtl.CEM import CEM
from data_loader import DataLoader
from utility import *
CONFIG_ROOT = curdir + "/config"
seed_val = 7
np.random.seed(seed_val)
random.seed(seed_val)
tf.compat.v1.set_random_seed(seed_val)
def main():
start_t = time.time()
# Obtain arguments from system
parser = argparse.ArgumentParser("Tensorflow")
parser.add_argument(
"--task",
default="train",
type=str,
help="Task: Can be train or test, the default value is train.",
)
parser.add_argument(
"--data", default="clothes", type=str, help="Data: The data you will use."
)
parser.add_argument(
"--model_path", type=str, help="Model_Path: The model path you will load."
)
parser.add_argument(
"--memory", default=0.0, type=float, help="Memory: The gpu memory you will use."
)
parser.add_argument(
"--batch_size",
default="64",
type=int,
help="Batch size: The size of each batch of data.",
)
parser.add_argument(
"--gpu", default=0, type=int, help="GPU: Which gpu you will use."
)
parser.add_argument(
"--log_path",
default="./logs/",
type=str,
help="path of the log file.",
)
parser.add_argument(
"--model",
default="cem",
type=str,
help="decide use what kind of model.",
)
parser.add_argument(
"--info", default="ordinary", type=str, help="information about task."
)
parser.add_argument(
"--is_only_cf",
default=False,
type=bool,
help="ablation study for counterfactual.",
)
parser.add_argument(
"--is_only_ssa",
default=False,
type=bool,
help="ablation study for satisfaction.",
)
parser.add_argument(
"--add_senti_loss",
default=False,
type=bool,
help="whether add senti in loss function.",
)
args = parser.parse_args()
now_time = time.strftime("%Y.%m.%d", time.localtime())
# log directory
if not os.path.exists(args.log_path):
os.mkdir(args.log_path)
# log file name setting
log_path = (
args.log_path
+ now_time
+ "."
+ args.info
+ "."
+ args.model
+ "."
+ args.data
+ "."
+ args.task
+ ".log"
)
if os.path.exists(log_path):
os.remove(log_path)
logger = logging.getLogger("Tensorflow")
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(message)s")
file_handler = logging.FileHandler(log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.info("Running with args : {}".format(args))
# get object named data_loader
data_prepare = DataLoader(data=args.data)
# Get config from file
logger.info("Load dataset and vocab...")
data_config_path = CONFIG_ROOT + "/data/config." + args.data + ".json"
model_config_path = CONFIG_ROOT + "/model/config." + args.model + ".json"
data_config = data_prepare.load_config(data_config_path)
model_config = data_prepare.load_config(model_config_path)
logger.info("Data config is {}".format(data_config))
logger.info("Model config is {}".format(model_config))
# Get config param
batch_size = int(args.batch_size)
epochs = model_config["total_epoch"]
keep_prob = model_config["keep_prob"]
is_val = model_config["is_val"]
is_test = model_config["is_test"]
save_best = model_config["save_best"]
shuffle = model_config["shuffle"]
nb_classes = data_config["nb_classes"]
if shuffle == 1:
shuffle = True
else:
shuffle = False
vocab_path = curdir + "/data/" + args.data + "/vocab.pkl"
memory = args.memory
logger.info(
"Memory in train %s. If Memory == 0, gpu_options.allow_growth = True." % memory
)
# Get vocab
with open(vocab_path, "rb") as fp:
vocab = pkl.load(fp)
# Get Network Framework
if args.model == "cem":
network = CEM(
memory=memory,
vocab=vocab,
config_dict=model_config,
is_only_cf=args.is_only_cf,
is_only_ssa=args.is_only_ssa,
add_senti_loss=args.add_senti_loss,
batch_size=args.batch_size,
)
else:
logger.info("We can't find {}: Please check model you want.".format(args.model))
raise ValueError(
"We can't find {}: Please check model you want.".format(args.model)
)
if args.task == "test" and args.model_path == None:
raise ValueError("Please input the model path you want to evaluate. ")
# Set param for network
network.set_nb_words(min(vocab.size(), data_config["nb_words"]) + 1)
network.set_data(args.data)
network.set_name(
args.model
+ "."
+ args.info
+ ".total_epoch"
+ str(model_config["total_epoch"])
+ ".pre_epoch"
+ str(model_config["pre_epoch"])
)
network.set_from_model_config(model_config)
network.set_from_data_config(data_config)
if args.task == "train":
network.build_dir()
network.build_graph()
data_generator = data_prepare.data_generator
logger.info("All values in the Network are {}".format(network.__dict__))
if args.task == "train":
train(
network,
data_generator,
keep_prob,
epochs,
data=args.data,
task=args.task,
batch_size=batch_size,
nb_classes=nb_classes,
shuffle=shuffle,
is_val=is_val,
is_test=is_test,
save_best=save_best,
model=args.model,
)
elif args.task == "test":
network.test_cem(
data_generator,
args.data,
batch_size=batch_size,
nb_classes=nb_classes,
test_task="test",
model_path=args.model_path,
)
else:
logger.info(
"{}: Please check task you want, such as train or evaluate.".format(
args.task
)
)
raise ValueError(
"{}: Please check task you want, such as train or evaluate.".format(
args.task
)
)
logger.info(
"The whole program spends time: {}h: {}m: {}s".format(
int((int(time.time()) - start_t) / 3600),
int((int(time.time()) - start_t) % 3600 / 60),
int((int(time.time()) - start_t) % 3600 % 60),
)
)
print("DONE!")
def train(
network,
data_generator,
keep_prob,
epochs,
data,
task="train",
batch_size=20,
nb_classes=2,
shuffle=True,
is_val=True,
is_test=True,
save_best=True,
model="cem",
):
if model == "cem":
network.train_cem(
data_generator=data_generator,
keep_prob=keep_prob,
epochs=epochs,
data=data,
task=task,
batch_size=batch_size,
nb_classes=nb_classes,
shuffle=shuffle,
is_val=is_val,
is_test=is_test,
is_save=True,
save_best=save_best,
save_frequency=10,
)
else:
raise ValueError("Wrong training model parameters: {}".format(model))
if __name__ == "__main__":
main()