Skip to content

Latest commit

 

History

History
38 lines (36 loc) · 1.3 KB

README.md

File metadata and controls

38 lines (36 loc) · 1.3 KB

3DInvNet

Implementation codes and datasets for the paper "3DInvNet: A Deep Learning-Based 3D Ground-Penetrating Radar Data Inversion" at http://dx.doi.org/10.1109/TGRS.2023.3275306.

  1. The simulated and real measured datasets can be found at https://drive.google.com/drive/folders/12mG7lA8g8KX55KPHmP9y3n4XxFZjLp4W?usp=sharing.

  2. Commands for training Inverter:
    python workspace_Inverter/trainInvNet.py
    --model InvNetModel_ff
    --lossfc MAE_loss
    --batch_size 4
    --lr 0.001
    --lr_decay 0.98
    --max_epoch 100
    --id MAE
    --train_data_path dataset/train/mask1
    --train_mask_path dataset/train/mask2
    --test_data_path dataset/test/mask1
    --test_mask_path dataset/test/mask2
    --model_path workspace_Inverter/exp/model/
    --visualization_path workspace_Inverter/exp/visual/
    --save_model

  3. Commands for training Denoiser:
    python workspace_Denoiser/trainDenoisingNet.py
    --model DenoisingNetModel
    --lossfc MSE_loss
    --batch_size 4
    --lr 0.001
    --lr_decay 0.98
    --max_epoch 100
    --id MSE
    --train_data_path dataset/train/data
    --train_mask_path dataset/train/mask1
    --test_data_path dataset/test/data
    --test_mask_path dataset/test/mask1
    --model_path workspace_Denoiser/exp/model/
    --visualization_path workspace_Denoiser/exp/visual/
    --save_model

  4. If any issues pls contact [email protected].