-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptim_test.go
54 lines (45 loc) · 901 Bytes
/
optim_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
package gotorch_test
import (
"fmt"
torch "github.com/wangkuiyi/gotorch"
nn "github.com/wangkuiyi/gotorch/nn"
)
type myNet struct {
nn.Module
L1, L2 *nn.LinearModule
}
// MyNet returns a MyNet instance
func newMyNet() *myNet {
n := &myNet{
L1: nn.Linear(100, 200, false),
L2: nn.Linear(200, 10, false),
}
n.Init(n)
return n
}
// Forward executes the calculation
func (n *myNet) Forward(x torch.Tensor) torch.Tensor {
x = n.L1.Forward(x)
x = n.L2.Forward(x)
return x
}
func ExampleSGD() {
net := newMyNet()
np := net.NamedParameters()
fmt.Println(len(np))
opt := torch.SGD(0.1, 0, 0, 0, false)
opt.AddParameters(net.Parameters())
for i := 0; i < 100; i++ {
torch.GC()
data := torch.RandN([]int64{32, 100}, false)
pre := net.Forward(data)
loss := torch.Sum(pre)
opt.ZeroGrad()
loss.Backward()
opt.Step()
}
torch.FinishGC()
opt.Close()
// Output:
// 2
}