forked from hastagAB/Awesome-Python-Scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
43 lines (33 loc) · 2.22 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import requests, bs4
def get_topic():
'''Get a topic to download from user.'''
topic_list = ['comics', 'books', 'art', 'culture', 'film', 'food', 'gaming', 'humor', 'internet-culture', 'lit', 'medium-magazine', 'music', 'photography', 'social-media', 'sports', 'style', 'true-crime', 'tv', 'writing', 'business', 'design', 'economy', 'startups', 'freelancing', 'leadersip', 'marketing', 'productivity', 'work', 'artificial-intelligence', 'blockchain', 'cryptocurrency', 'cybersecurity', 'data-science', 'gadgets', 'javascript', 'macine-learning', 'math', 'neuroscience', 'programming', 'science', 'self-driving-cars', 'software-engineering', 'space', 'technology', 'visual-design', 'addiction', 'creativity', 'disability', 'family', 'health', 'mental-health', 'parenting', 'personal-finance', 'pets', 'psychedelics', 'psychology', 'relationships', 'self', 'sexuality', 'spirituality', 'travel', 'wellness', 'basic-income', 'cities', 'education', 'environment', 'equality', 'future', 'gun-control', 'history', 'justice', 'language', 'lgbtqia', 'media', 'masculinity', 'philosophy', 'politics', 'race', 'religion', 'san-francisco', 'transportation', 'women', 'world']
print('Welcome to Medium aricle downloader by @CoolSonu39!')
choice = 'some-random-topic'
print('Which domain do you want to read today?')
while choice not in topic_list:
print("Enter 'list' to see the list of topics.")
choice = input('Enter your choice: ')
if choice == 'list':
print()
for i in topic_list:
print(i)
print()
elif choice not in topic_list:
print('\nTopic' + choice + 'not found :(')
return choice
def extract_links(url):
'''Extract article links from url'''
html_response = requests.get(url)
parsed_response = bs4.BeautifulSoup(html_response.text, features='html5lib')
article_list = parsed_response.select('h3 > a')
return article_list
def medium_text(url):
'''Extract text from a medium article link.'''
html_response = requests.get(url)
parsed_response = bs4.BeautifulSoup(html_response.text, features='html5lib')
tag_list = parsed_response.find_all(['h1', 'p', 'h2'])
extracted_text = ''
for j in range(len(tag_list)):
extracted_text += tag_list[j].getText() + '\n\n'
return extracted_text